ECE595 / STAT598: Machine Learning I Lecture 32 Validation

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

- Lecture 31 Overfit
- Lecture 32 Regularization
- Lecture 33 Validation

Today's Lecture:

- Validation
 - Concept of validation
 - Properties of validation error
- Model Selection
 - Basic idea
 - Case study
- Validation in Regularization
 - Cross validation
 - Parameter selection

Evaluating Your Model

Evaluating Your Model

Validation Set

- What does \mathcal{D}_{val} buy you?
- ullet Generalization bound using $\mathcal{D}_{\mathrm{val}}$?
- How to use \mathcal{D}_{val} ?
- Validation vs Cheating
- Cross Validation

The Role of Validation

Recall the generalization error:

$$E_{\text{out}}(h) = E_{\text{in}}(h) + \underbrace{\text{overfitpenalty}}_{\text{regularization suppresses this term}}$$

• How about validation?

$$\underline{\mathcal{E}_{\mathrm{out}}(h)} = \mathcal{E}_{\mathrm{in}}(h) + \mathrm{overfitpenalty}$$

validation estimates this term

• Is it the same as testing?

$$\underline{\mathcal{E}_{\mathrm{out}}(h)} = \mathcal{E}_{\mathrm{in}}(h) + \mathrm{overfitpenalty}$$
 testing estimates this term

- Testing: You cannot use testing set at any stage of training.
- Validation: You can use validation to make choices during training.

Creating the Validation Set

- Data set: $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$. N samples.
- Validation set: \mathcal{D}_{val} . K samples.
- Training set: $\mathcal{D}_{\mathrm{training}}$. N K samples.
- \bullet If you run the learning algorithm on $\mathcal{D}_{\mathrm{train}},$ you obtain

$$g^- \in \mathcal{H}$$

- g^- : a hypothesis learned by "subtracting" some samples
- \bullet g^- is not necessarily the final hypothesis you eventually report

What does validation tell us?

Goal: Define the validation error $E_{\rm val}(g^-)$, and analyze its statistical properties.

• The validation error is

$$E_{\mathrm{val}}(g^{-}) = rac{1}{K} \sum_{oldsymbol{x}_n \in \mathcal{D}_{\mathrm{val}}} \mathrm{e}(g^{-}(oldsymbol{x}_n), y_n)$$

- Average error over the *validation set*. $e(g^{-}(x_n), y_n)$: Point-wise error.
- Classification:

$$e(g^{-}(x), y) = [g^{-}(x) \neq y]$$

Regression:

$$e(g^{-}(x), y) = (g^{-}(x) - y)^{2}$$

• Want to analyze the **mean** and **variance** of $E_{val}(g^-)$.

Property 1: Mean of $E_{\rm val}(g^-)$

- Let us analyze the mean of $E_{\rm val}(g^-)$.
- ullet We want to show that the validation error $E_{\mathrm{val}}(g^-)$ is an **unbiased estimate** of E_{out}
- That is, the expectation of $E_{\rm val}(g^-)$ is $E_{\rm out}$
- Here is why:

$$\mathbb{E}_{\mathcal{D}_{\text{val}}}[E_{\text{val}}(g^{-})] = \mathbb{E}_{\mathcal{D}_{\text{val}}} \left[\frac{1}{K} \sum_{\mathbf{x}_{n} \in \mathcal{D}_{\text{val}}} e(g^{-}(\mathbf{x}_{n}), y_{n}) \right] \qquad \text{(definition)}$$

$$= \frac{1}{K} \sum_{\mathbf{x}_{n} \in \mathcal{D}_{\text{val}}} \mathbb{E}_{\mathcal{D}_{\text{val}}} \left[e(g^{-}(\mathbf{x}_{n}), y_{n}) \right] \qquad \text{(linearity)}$$

$$= \frac{1}{K} \sum_{\mathbf{x}_{n} \in \mathcal{D}_{\text{val}}} \mathbb{E}_{\mathbf{x}_{n}} \left[e(g^{-}(\mathbf{x}_{n}), y_{n}) \right] \qquad \mathcal{D}_{\text{val}} = (\mathbf{x}_{n}, f(\mathbf{x}_{n}))$$

$$= \frac{1}{K} \sum_{\mathbf{x}_{n} \in \mathcal{D}_{\text{val}}} \mathbb{E}_{\text{out}}(g^{-}) = E_{\text{out}}(g^{-}) \qquad \mathbf{x}_{n} \sim p(\mathbf{x})$$

$$\stackrel{\text{(Stanley Chan 2020)}}{\text{(Stanley Chan 2020)}}$$

Property 2: Variance of $E_{\rm val}(g^-)$

- Define $\sigma_{\text{val}}^2 = \text{Var}_{\mathcal{D}_{\text{val}}}[E_{\text{val}}(g^-)].$
- How does $\sigma_{\rm val}^2$ depend on K?
- Let's do some calculation

$$\begin{split} \sigma_{\mathrm{val}}^2 &= \mathrm{Var}_{\mathcal{D}_{\mathrm{val}}} \left[\frac{1}{K} \sum_{\boldsymbol{x}_n \in \mathcal{D}_{\mathrm{val}}} \mathrm{e}(g^-(\boldsymbol{x}_n), y_n) \right] & \text{(definition)} \\ &= \frac{1}{K^2} \sum_{\boldsymbol{x}_n \in \mathcal{D}_{\mathrm{val}}} \underbrace{\mathrm{Var}_{\mathcal{D}_{\mathrm{val}}} \left[\mathrm{e}(g^-(\boldsymbol{x}_n), y_n) \right]}_{\frac{\mathrm{def}}{=} \sigma^2(g^-)} & \text{(independence)} \\ &= \frac{1}{K^2} \sum_{\boldsymbol{x}_n \in \mathcal{D}_{\mathrm{val}}} \sigma^2(g^-) & \\ &= \frac{1}{K} \sigma^2(g^-). \end{split}$$

Property 2: Variance of $E_{\rm val}(g^-)$

- If we consider a classification problem so that $e(g^-(x), y) = [g^-(x) \neq y]$
- Then

$$\begin{split} \sigma_{\mathrm{val}}^2 &= \frac{1}{K} \sigma^2(g^-) = \frac{1}{K} \mathrm{Var}_{\mathcal{D}_{\mathrm{val}}} \left[\mathrm{e}(g^-(\boldsymbol{x}), y) \right] & \text{(definition)} \\ &= \frac{1}{K} \mathrm{Var}_{\mathcal{D}_{\mathrm{val}}} \left[\llbracket g^-(\boldsymbol{x}) \neq y \rrbracket \right] & \text{(classification)} \\ &= \frac{1}{K} \mathbb{P}[g^-(\boldsymbol{x}) \neq y] (1 - \mathbb{P}[g^-(\boldsymbol{x}) \neq y]) & \text{(Bernoulli)}. \end{split}$$

- Remark: If X is Bernoulli, then $Var[X] = p(1-p) \le \frac{1}{4}$.
- Therefore, we can bound $\sigma_{\rm val}^2$ using

$$\sigma_{\mathrm{val}}^2 \leq \frac{1}{4K}$$
.

• So as $K \to \infty$, $\sigma_{\rm val}^2 \to 0$.

Does $E_{\text{val}}(g^-)$ Generalize?

- $E_{\text{val}}(g^-)$ is a **random variable**. So it fluctuates.
- Mean: $\mathbb{E}_{\mathcal{D}_{\text{val}}}[E_{\text{val}}(g^-)]$.
- Variance: $\operatorname{Var}_{\mathcal{D}_{\mathrm{val}}}[E_{\mathrm{val}}(g^{-})].$
- Previous slide: $\mathbb{E}_{\mathcal{D}_{\mathrm{val}}}[E_{\mathrm{val}}(g^{-})] = E_{\mathrm{out}}(g^{-}).$
- So we should expect Hoeffding inequality to apply:

$$\mathsf{E}_{\mathrm{out}}(\mathsf{g}^-) \leq \mathsf{E}_{\mathrm{val}}(\mathsf{g}^-) + \mathcal{O}\left(rac{1}{\sqrt{K}}
ight).$$

• Why? Recall Hoeffding inequality for one hypothesis:

$$E_{\mathrm{out}}(h) \leq E_{\mathrm{in}}(h) + \mathcal{O}\left(\frac{1}{\sqrt{N}}\right).$$

• So as K grows, $E_{\rm val}(g^-)$ actually generalizes $E_{\rm out}(g^-)$ very well.

Large K or Small K?

No matter how you look at the result: Generalization bound or variance bound

$$\sigma_{\mathrm{val}}^2 \leq \frac{1}{4K}$$
.

- If $K \to \infty$, then $\sigma_{\rm val}^2 \to 0$
- So large *K* is good.
- But can K be really really large?
- No. K for validation, N K for training.

Re-Using K

- Is it a waste if we can only use N K samples for training?
- No. You are allowed to reuse the K samples
- Use $\mathcal{D}_{\mathrm{val}}$ to give an estimate of $E_{\mathrm{val}}(g^-)$
- Use $E_{\rm val}(g^-)$ as a guide to choose g
- Here is a pictorial illustration
- Rule of Thumb: $K = \frac{N}{5}$

Outline

- Lecture 31 Overfit
- Lecture 32 Regularization
- Lecture 33 Validation

Today's Lecture:

- Validation
 - Concept of validation
 - Properties of validation error
- Model Selection
 - Basic idea
 - Case study
- Validation in Regularization
 - Cross validation
 - Parameter selection

Validation for Model Selection

- Consider a set of M models: $\mathcal{H}_1, \ldots, \mathcal{H}_M$
- E.g., linear / quadratic / logistic, etc
- E.g., linear model with different regularization parameters, etc
- How to choose the model?
- Use $\mathcal{D}_{\text{train}}$ to train g_1^-, \dots, g_M^-
- Evaluate

$$E_m = E_{\mathrm{val}}(g_m^-),$$

for m = 1, ..., M.

- E_m is an **unbiased estimate** of the out-sample error $E_{\text{out}}(g_m^-)$.
- Select the one with the minimum validation error:

$$m^* = \underset{m}{\operatorname{argmin}} E_m$$

• The model \mathcal{H}_{m^*} is the best model

Generalization Bound for Model Selection

- If you choose $g_{m^*}^-$ from g_1^-, \ldots, g_M^-
- You are effectively considering

$$\mathcal{H}_{\mathrm{val}} = \{g_1^-, \dots, g_M^-\}.$$

• So the price you need to pay in the generalization bound is

$$egin{align} E_{ ext{out}}(oldsymbol{g}_{m^*}^-) & \leq E_{ ext{val}}(oldsymbol{g}_{m^*}^-) \ & + \mathcal{O}\left(\sqrt{rac{\log M}{K}}
ight). \end{align}$$

- Use $g_{m^*}^-$ as the final hypothesis?
- No. Should choose \mathcal{H}_{m^*} , and train with N samples.

Expected Error

Expected Error

Expected Error

Expected Error

Observations

Validation and N - K **samples for training**:

- $\mathbb{E}[E_{out}(g_{m^*}^-)]$ drops and then rise.
- Compared to in-sample, $\mathbb{E}[E_{out}(g_{m^*}^-)]$ uses a few samples to validate.
- This gives a good estimate of out-sample error.
- As K increases, the estimate improves. So $\mathbb{E}[E_{out}(g_{m^*}^-)]$ drops.
- If K is too large, then only N K samples for training.
- Poor training makes $\mathbb{E}[E_{out}(g_{m^*}^-)]$ rise.

Validation and *N* **samples for training**:

- $\mathbb{E}[E_{out}(g_{m^*})]$ will be lower.
- Because you have chosen the best.

Therefore, you should always recycle the validation data for training the final hypothesis.

Outline

- Lecture 31 Overfit
- Lecture 32 Regularization
- Lecture 33 Validation

Today's Lecture:

- Validation
 - Concept of validation
 - Properties of validation error
- Model Selection
 - Basic idea
 - Case study
- Validation in Regularization
 - Cross validation
 - Parameter selection

Cross Validation

- A principled way to estimate the out-sample error, without suffering from small K problem.
- Consider the leave-one-out approach.
- Let the data set be

$$\mathcal{D}_{n} = (x_{1}, y_{1}), \dots, (x_{n-1}, y_{n-1}), (x_{n}, y_{n}), (x_{n+1}, y_{n+1}), \dots, (x_{N}, y_{N})$$

- Remove the *n*-th training sample
- Learn the hypothesis function

$$g_n^- = \text{learn from } \mathcal{D}_n$$
.

Let error

$$e_n \stackrel{\text{def}}{=} E_{\text{val}}(g_n^-) = e(g_n^-(\boldsymbol{x}_n), y_n).$$

• Remark: e_n is based on a single data point (x_n, y_n) .

Cross Validation

• This will give you

$$e_1, e_2, \ldots, e_N$$

• Let's compute the average

$$E_{\mathrm{cv}} = \frac{1}{N} \sum_{n=1}^{N} \mathrm{e}_{n}.$$

- Validation: Use K samples to validate
- Cross-Validation: Recycle the N samples to validate

Cross-Validation for Linear Regression

Recall the linear regression model:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- How to estimate the optimal λ ?
- Let

$$\mathbf{H}(\lambda) = \mathbf{A}(\mathbf{A}^T\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^T$$

 $\widehat{\mathbf{y}} = \mathbf{H}\mathbf{y}$

Compute the cross validation score:

$$E_{\text{cv}} = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\widehat{y}_n - y_n}{1 - H_{n,n}(\lambda)} \right)^2$$

- $H_{n,n}(\lambda) = \mathbf{x}_n^T (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{x}_n$. (See textbook Problem 4.26.)
- Pick λ that minimizes $E_{\rm cv}$

V-fold validation

- ullet Leave one out: N training sessions. Each session has N-1 points.
- ullet In practice: Partition the dataset into V sessions.
- Each session has N/V points.
- Train using $\mathcal{D} \backslash \mathcal{D}_V$.
- Test using \mathcal{D}_V .
- Rule of Thumb: V = 10. 10-fold cross-validation.

Summary

- Validation says: Break the dataset into testing and validation.
- Use validation set to help selecting models and parameters.
- Then reuse the data to report the final hypothesis.
- Can also use cross-validation to get a better estimate of E_{out} .
- Never use testing data for validation.

Reading List

• Yaser Abu-Mustafa, Learning from Data, Chapter 4.3

Appendix

Unbiasedness of E_{cv}

- ullet Why care? If yes, then we can use $E_{
 m cv}$ to estimate $E_{
 m out}$
- Recall $g^{(\mathcal{D})}$. The out-sample error for $g^{(\mathcal{D})}$ is

$$E_{\mathrm{out}}(N) = \mathbb{E}_{\mathcal{D}}[E_{\mathrm{out}}(g^{(\mathcal{D})})].$$

- $E_{\text{out}}(N)$: Overall out-sample error average over all possible training sets
- \bullet $E_{\text{out}}(N)$: Function of N. If you have more training samples, then you have lower error
- We can show that

$$\begin{split} E_{\text{out}}(N) &\stackrel{?}{=} \mathbb{E}_{\mathcal{D}}[E_{\text{cv}}] \\ &= \mathbb{E}_{\mathcal{D}} \left[\frac{1}{N} \sum_{n=1}^{N} \mathbf{e}_{n} \right] = \frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{\mathcal{D}}[\mathbf{e}_{n}] = \mathbb{E}_{\mathcal{D}}[\mathbf{e}_{n}]. \end{split}$$

Unbiasedness of E_{cv}

• So what is $\mathbb{E}_{\mathcal{D}}[e_n]$?

$$\begin{split} \mathbb{E}_{\mathcal{D}}[\mathsf{e}_n] &= \mathbb{E}_{\mathcal{D}_n, (\mathbf{x}_n, y_n)}[\mathsf{e}_n] & \text{decouple } \mathcal{D} \\ &= \mathbb{E}_{\mathcal{D}_n} \mathbb{E}_{(\mathbf{x}_n, y_n)}[\mathsf{e}(g_n^-(\mathbf{x}_n), y_n)] \\ &= \mathbb{E}_{\mathcal{D}_n} \mathbb{E}_{(\mathbf{x}_n, y_n)}[E_{\mathrm{val}}(g_n^-)] \\ &= \mathbb{E}_{\mathcal{D}_n} E_{\mathrm{out}}(g_n^-) & \text{unbisedness of } E_{\mathrm{val}} \\ &= E_{\mathrm{out}}(N-1). & \text{expectation of } \mathcal{D}_n \end{split}$$

So,

$$\mathbb{E}_{\mathcal{D}}[E_{\mathrm{cv}}] = E_{\mathrm{out}}(N-1).$$

- That means: $E_{\rm cv}$ is an unbiased estimate of $E_{\rm out}(N-1)$
- Remark: This gives us the mean of E_{cv} . The variance is a lot harder because \mathcal{D}_m and \mathcal{D}_n overlaps.