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Validation Set

What does Dval buy you?

Generalization bound using Dval?

How to use Dval?

Validation vs Cheating

Cross Validation
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The Role of Validation

Recall the generalization error:

Eout(h) = Ein(h) + overfitpenalty︸ ︷︷ ︸
regularization suppresses this term

How about validation?
Eout(h)︸ ︷︷ ︸

validation estimates this term

= Ein(h) + overfitpenalty

Is it the same as testing?

Eout(h)︸ ︷︷ ︸
testing estimates this term

= Ein(h) + overfitpenalty

Testing: You cannot use testing set at any stage of training.

Validation: You can use validation to make choices during training.
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Creating the Validation Set

Data set: D = {(x1, y1), . . . , (xN , yN)}. N samples.

Validation set: Dval. K samples.

Training set: Dtraining. N − K samples.

If you run the learning algorithm on Dtrain, you obtain

g− ∈ H

g−: a hypothesis learned by “subtracting” some samples

g− is not necessarily the final hypothesis you eventually report
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What does validation tell us?

Goal: Define the validation error Eval(g−), and analyze its statistical properties.

The validation error is

Eval(g−) =
1

K

∑
xn∈Dval

e(g−(xn), yn)

Average error over the validation set. e(g−(xn), yn): Point-wise error.

Classification:
e(g−(x), y) = [[g−(x) 6= y ]]

Regression:
e(g−(x), y) = (g−(x)− y)2

Want to analyze the mean and variance of Eval(g−).
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Property 1: Mean of Eval(g
−)

Let us analyze the mean of Eval(g−).
We want to show that the validation error Eval(g−) is an unbiased estimate of Eout

That is, the expectation of Eval(g−) is Eout

Here is why:

EDval
[Eval(g−)] = EDval

 1

K

∑
xn∈Dval

e(g−(xn), yn)

 (definition)

=
1

K

∑
xn∈Dval

EDval

[
e(g−(xn), yn)

]
(linearity)

=
1

K

∑
xn∈Dval

Exn

[
e(g−(xn), yn)

]
Dval = (xn, f (xn))

=
1

K

∑
xn∈Dval

Eout(g−) = Eout(g−) xn ∼ p(x)
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Property 2: Variance of Eval(g
−)

Define σ2val = VarDval
[Eval(g−)].

How does σ2val depend on K ?
Let’s do some calculation

σ2val = VarDval

 1

K

∑
xn∈Dval

e(g−(xn), yn)

 (definition)

=
1

K 2

∑
xn∈Dval

VarDval

[
e(g−(xn), yn)

]︸ ︷︷ ︸
def
=σ2(g−)

(independence)

=
1

K 2

∑
xn∈Dval

σ2(g−)

=
1

K
σ2(g−).
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Property 2: Variance of Eval(g
−)

If we consider a classification problem so that e(g−(x), y) = [[g−(x) 6= y ]]

Then

σ2val =
1

K
σ2(g−) =

1

K
VarDval

[
e(g−(x), y)

]
(definition)

=
1

K
VarDval

[
[[g−(x) 6= y ]]

]
(classification)

=
1

K
P[g−(x) 6= y ](1− P[g−(x) 6= y ]) (Bernoulli).

Remark: If X is Bernoulli, then Var[X ] = p(1− p) ≤ 1
4 .

Therefore, we can bound σ2val using

σ2val ≤
1

4K
.

So as K →∞, σ2val → 0.
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Does Eval(g
−) Generalize?

Eval(g−) is a random variable. So it fluctuates.

Mean: EDval
[Eval(g−)].

Variance: VarDval
[Eval(g−)].

Previous slide: EDval
[Eval(g−)] = Eout(g−).

So we should expect Hoeffding inequality to apply:

Eout(g−) ≤ Eval(g−) +O
(

1√
K

)
.

Why? Recall Hoeffding inequality for one hypothesis:

Eout(h) ≤ Ein(h) +O
(

1√
N

)
.

So as K grows, Eval(g−) actually generalizes Eout(g−) very well.
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Large K or Small K?

No matter how you look at the result: Generalization bound or variance bound

σ2val ≤
1

4K
.

If K →∞, then σ2val → 0

So large K is good.

But can K be really really large?

No. K for validation, N − K for training.
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Re-Using K

Is it a waste if we can only use N − K
samples for training?

No. You are allowed to reuse the K
samples

Use Dval to give an estimate of Eval(g−)

Use Eval(g−) as a guide to choose g

Here is a pictorial illustration

Rule of Thumb: K = N
5
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Validation for Model Selection

Consider a set of M models: H1, . . . ,HM

E.g., linear / quadratic / logistic, etc

E.g., linear model with different regularization parameters, etc

How to choose the model?

Use Dtrain to train g−1 , . . . , g
−
M .

Evaluate
Em = Eval(g−m ),

for m = 1, . . . ,M.

Em is an unbiased estimate of the out-sample error Eout(g−m ).

Select the one with the minimum validation error:

m∗ = argmin
m

Em

The model Hm∗ is the best model
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Generalization Bound for Model Selection

If you choose g−m∗ from g−1 , . . . , g
−
M

You are effectively considering

Hval = {g−1 , . . . , g
−
M}.

So the price you need to pay in the
generalization bound is

Eout(g−m∗) ≤ Eval(g−m∗)

+O

(√
log M

K

)
.

Use g−m∗ as the final hypothesis?

No. Should choose Hm∗ , and train with N
samples. 16 / 31
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Case Study: H2 vs H5
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Expected Error
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Observations

Validation and N − K samples for training:

E[Eout(g−m∗)] drops and then rise.

Compared to in-sample, E[Eout(g−m∗)] uses a few samples to validate.

This gives a good estimate of out-sample error.

As K increases, the estimate improves. So E[Eout(g−m∗)] drops.

If K is too large, then only N − K samples for training.

Poor training makes E[Eout(g−m∗)] rise.

Validation and N samples for training:

E[Eout(gm∗)] will be lower.

Because you have chosen the best.

Therefore, you should always recycle the validation data for training the final hypothesis.
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Cross Validation

A principled way to estimate the out-sample error, without suffering from small K
problem.

Consider the leave-one-out approach.

Let the data set be

Dn = (x1, y1), . . . , (xn−1, yn−1),����(xn, yn), (xn+1, yn+1), . . . , (xN , yN)

Remove the n-th training sample

Learn the hypothesis function
g−n = learn from Dn.

Let error
en

def
= Eval(g−n ) = e(g−n (xn), yn).

Remark: en is based on a single data point (xn, yn).
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Cross Validation

This will give you
e1, e2, . . . , eN

Let’s compute the average

Ecv =
1

N

N∑
n=1

en.

Validation: Use K samples to validate

Cross-Validation: Recycle the N samples to validate
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Cross-Validation for Linear Regression

Recall the linear regression model:

w∗ = (ATA + λI )−1ATy

How to estimate the optimal λ?

Let

H(λ) = A(ATA + λI )−1AT

ŷ = Hy

Compute the cross validation score:

Ecv =
1

N

N∑
n=1

(
ŷn − yn

1− Hn,n(λ)

)2

Hn,n(λ) = xT
n (ATA + λI )−1xn. (See textbook Problem 4.26.)

Pick λ that minimizes Ecv
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V -fold validation

Leave one out: N training sessions. Each session has N − 1 points.

In practice: Partition the dataset into V sessions.

Each session has N/V points.

Train using D\DV .

Test using DV .

Rule of Thumb: V = 10. 10-fold cross-validation.
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Summary

Validation says: Break the dataset into testing and validation.

Use validation set to help selecting models and parameters.

Then reuse the data to report the final hypothesis.

Can also use cross-validation to get a better estimate of Eout .

Never use testing data for validation.
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Reading List

Yaser Abu-Mustafa, Learning from Data, Chapter 4.3
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Appendix
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Unbiasedness of Ecv

Why care? If yes, then we can use Ecv to estimate Eout

Recall g (D). The out-sample error for g (D) is

Eout(N) = ED
[
Eout(g (D))

]
.

Eout(N): Overall out-sample error average over all possible training sets

Eout(N): Function of N. If you have more training samples, then you have lower error

We can show that

Eout(N)
?
= ED[Ecv]

= ED

[
1

N

N∑
n=1

en

]
=

1

N

N∑
n=1

ED [en] = ED [en] .
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Unbiasedness of Ecv

So what is ED[en]?

ED[en] = EDn,(xn,yn)[en] decouple D
= EDnE(xn,yn)[e(g−n (xn), yn)]

= EDnE(xn,yn)[Eval(g−n )]

= EDnEout(g−n ) unbisedness of Eval

= Eout(N − 1). expectation of Dn

So,
ED[Ecv] = Eout(N − 1).

That means: Ecv is an unbiased estimate of Eout(N − 1)

Remark: This gives us the mean of Ecv. The variance is a lot harder because Dm and Dn

overlaps.
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