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Outline

@ Lecture 31 Overfit
@ Lecture 32 Regularization
@ Lecture 33 Validation

Today’s Lecture:
o Validation
e Concept of validation
e Properties of validation error
@ Model Selection
e Basic idea
e Case study
@ Validation in Regularization

e Cross validation
o Parameter selection
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Evaluating Your Model

Unknown target function

=Y unknown input distribution

|

Training Data

D={(xny1),....(®x.yn)}

Learning Algorithm

Hypothesis Set

o

H={h1,....hn}
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Evaluating Your Model

Unknown target function

f:X-=)Y unknown input distribution

|

Training Data

|
\ Final Hypothesis
- g

D={(xny1),....(®x.yn)}

glx) ~ f(x)
Learning Algorithm

Hypothesis Set

H={h1,....hn}
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Validation Set

. Dvaljdation

Dtrain

What does Dy, buy you?
Generalization bound using Dy, ?
How to use Dy,;?

Validation vs Cheating

Cross Validation

431



N
The Role of Validation

@ Recall the generalization error:
Eout(h) = Ein(h) + overfitpenalty
N———
regularization suppresses this term

@ How about validation?
Eout(h) = Ein(h) + overfitpenalty

validation estimates this term
@ Is it the same as testing?

Eout(h) = Ein(h) + overfitpenalty
testing estimates this term

@ Testing: You cannot use testing set at any stage of training.

@ Validation: You can use validation to make choices during training.
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|
Creating the Validation Set

‘ | Dyalidation

Dtrain

Data set: D = {(x1,y1),...,(xn,yn)}. N samples.
Validation set: D,,;. K samples.
Training set: Diraining. N — K samples.

If you run the learning algorithm on Diain, you obtain
g €H

g : a hypothesis learned by “subtracting” some samples

(]

g~ is not necessarily the final hypothesis you eventually report
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What does validation tell us?

Goal: Define the validation error Ei,1(g ™), and analyze its statistical properties.

@ The validation error is

_ 1 _
Eva(g™) = K Z e(g ™ (xn), yn)
anDval
@ Average error over the validation set. e(g~(xp),yn): Point-wise error.
o Classification:
e(g”(x),y) =g~ (x) # 1

@ Regression:

e(g (x),y) = (g (x) —y)

e Want to analyze the mean and variance of E,(g™).

7/31



-
Property 1: Mean of E;.(g™)

@ Let us analyze the mean of E.,(g7).

e We want to show that the validation error Ey,(g ™) is an unbiased estimate of E,y;
@ That is, the expectation of Eyy(g7~) is Eout

@ Here is why:

1

Ep,. [Eva(g )] =Epy, [0 D, elg”(xn).yn) (definition)
XnGDval
1 _ . .
= > Ep,lelg (a)yn)]  (linearity)
XnEDval
1 _
=% D Ex, [e(g™(%n), ya)] Dyar = (xn, f(%n))
Xn€Dyal
1 _ _
:R Eout(g™) = Eout(g™) xn ~ p(x)
Xn€Dyal
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Property 2: Variance of E.,(g™)

o Define Uval = Varp,_,, [Eval(g7)]
@ How does Uval depend on K7
@ Let's do some calculation

1
0% = Varp,,, K Z (g (%n), yn) (definition)
XHGDval
Z Varp,, [e(g “(x n)7yn)] (independence)
Xnepval difo_;(r 7)
1
= K2 Z 0_2(g )
XHGDval
1
i *(g)
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-
Property 2: Variance of E.,(g™)

e If we consider a classification problem so that e(g~(x),y) = [g~(x) # y]

@ Then
Ooal = RJ (g7) = ?Vaurpm1 [e(g (x),y)] (definition)
1
= Varp,,, [[g~(x) # 1] (classification)
1 _ _ .
= Ple”(x) # y(1 — Plg™(x) # y]) (Bernoulli).
o Remark: If X is Bernoulli, then Var[X] = p(1 — p) < 1.
@ Therefore, we can bound O'gal using
1
2
< —.
Oval > 4K

2
So as K — o0, 02, — 0.
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|
Does E.i(g~) Generalize?

e E(g™) is a random variable. So it fluctuates.
e Mean: Ep_ [Evai(g7)]

e Variance: Varp,, [Eval(g7)]-

@ Previous slide: Ep_ [Eval(g7)] = Eout(g™)-

@ So we should expect Hoeffding inequality to apply:

Eule) < Bule )+ O (2.

@ Why? Recall Hoeffding inequality for one hypothesis:

1
Eout(h) < Ein(h) +0 <\/N> .
@ So as K grows, Ey,(g~) actually generalizes Eqyi(g™) very well.
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|
Large K or Small K7

@ No matter how you look at the result: Generalization bound or variance bound
1

2

Oval < R

If K — oo, then 02, — 0
So large K is good.
But can K be really really large?

No. K for validation, N — K for training.

-

size of validation set, &'

Expected E,,
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Re-

Using K

Is it a waste if we can only use N — K
samples for training?

No. You are allowed to reuse the K
samples

Use Dy, to give an estimate of Eya(g™)
Use E,.i(g™) as a guide to choose g
Here is a pictorial illustration

Rule of Thumb: K = §

D
(N) !
Dirain
(N — K)

g Dya)

| (K)
\J \J
g E\‘nl(gr)
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@ Model Selection
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@ Validation in Regularization

e Cross validation
o Parameter selection
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N
Validation for Model Selection

e Ep, is an unbiased estimate of the out-sample error Eqyi(g,,)-

Consider a set of M models: Hi,...,Hwum
E.g., linear / quadratic / logistic, etc
E.g., linear model with different regularization parameters, etc
How to choose the model?
Use Dyrain to train gy, ..., gy
Evaluate
En= val(g;)a
form=1,..., M.

@ Select the one with the minimum validation error:

m* = argmin Ej,
m

The model H,+ is the best model
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Generalization Bound for Model Selection

e If you choose g, from g;",..., gy,
@ You are effectively considering
Hi Ha Hnr
Hyal = {g1_7 cee 7g/\7[} Dirain i i i
A g1 p) InM

@ So the price you need to pay in the

generalization bound is Dyl i—i—i

— —_ E E; - Ej
Eout (gm* ) S Eval (gm* ) j ' pick tzhz\ best Y
+ O < IOiM) . (Hypts Epyx)
P —

Y
@ Use g,,. as the final hypothesis? Iy

@ No. Should choose H,+, and train with N
samples. 16 /31
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Case Study: H, vs Hs

F

b

v
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Case Study: H, vs Hs

F 3
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Case Study: H, vs Hs
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Case Study: H, vs Hs

F

b

v
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Expected Error

Use in-sample to pick: g
Always picks Hs

Expected F,.t

v

Validation Set Size I
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Expected Error

Use in-sample to pick: g
Always picks Hs

Expected F, ¢

Use out-sample to pick: Oracle
Always picks Ha

v

Validation Set Size I
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Expected Error

Use in-sample to pick: g
Always picks Hs

Expected F, ¢

Use out-sample to pick: Oracle
Always picks Ha

v

Validation Set Size I
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Expected Error

Expected F, ¢

validation g,,,.

Use in-sample to pick: g
Always picks Hs

validation g

Use out-sample to pick: Oracle
Always picks Ha

v

Validation Set Size I
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]
Observations

Validation and N — K samples for training:

o E[E,ut(g,,-)] drops and then rise.

Compared to in-sample, E[Eyt(g,,-)] uses a few samples to validate.
@ This gives a good estimate of out-sample error.
o As K increases, the estimate improves. So E[E,,t(g;,+)] drops.
o If K is too large, then only N — K samples for training.
e Poor training makes E[Eout(g,,+)] rise.
Validation and N samples for training;:
o E[Eout(gm+)] will be lower.
@ Because you have chosen the best.

Therefore, you should always recycle the validation data for training the final hypothesis.

21/31



]
Outline

@ Lecture 31 Overfit
@ Lecture 32 Regularization
@ Lecture 33 Validation

Today’s Lecture:
e Validation
e Concept of validation
e Properties of validation error
@ Model Selection
e Basic idea
e Case study
@ Validation in Regularization

e Cross validation
o Parameter selection
22/31



Cross Validation

@ A principled way to estimate the out-sample error, without suffering from small K
problem.

@ Consider the leave-one-out approach.
@ Let the data set be

Dn = (xlayl), RN (anla}/nfl),m» (Xn+1a.yn+1)a ceey (xNayN)

@ Remove the n-th training sample
@ Learn the hypothesis function
g, = learn from D,.

@ Let error det
en = Evalg, ) = e(gy (Xn), Yn)-
@ Remark: e, is based on a single data point (xp, yn).
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Cross Validation

o This will give you

€1,€2,...,€N
@ Let's compute the average
T
ECV N Zl €p.
n—

g

|

I

|
€1
|
|

T

@ Validation: Use K samples to validate
@ Cross-Validation: Recycle the N samples to validate
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Cross-Validation for Linear Regression

@ Recall the linear regression model:

w*=(ATA+)tATy

How to estimate the optimal A?
o Let

H(\) = AATA+)I)tAT
y = Hy

Compute the cross validation score:

Lo Iy \
E.,=— _sn Jn
v TN ; (1 - H,,,,,(A))
Hpn(A) = xT (AT A+ A1) 1x,. (See textbook Problem 4.26.)
Pick A that minimizes E.,
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N
V-fold validation

train validats train

Leave one out: N training sessions. Each session has N — 1 points.
In practice: Partition the dataset into V sessions.

Each session has N/V points.

Train using D\Dy,.

Test using Dy,.

Rule of Thumb: V = 10. 10-fold cross-validation.
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Summary

Validation says: Break the dataset into testing and validation.
Use validation set to help selecting models and parameters.
Then reuse the data to report the final hypothesis.

Can also use cross-validation to get a better estimate of E,,;.

Never use testing data for validation.
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Reading List

@ Yaser Abu-Mustafa, Learning from Data, Chapter 4.3
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Appendix
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N
Unbiasedness of E.,

@ Why care? If yes, then we can use E., to estimate E,ut
o Recall g(D). The out-sample error for g(D) is

Eou(N) = Ep [ Eou(e™)].

@ E,ui(N): Overall out-sample error average over all possible training sets
@ E,ui(N): Function of N. If you have more training samples, then you have lower error
@ We can show that

-
Eout(N) = ED[ECV]
N
1
N > e
n=1

N
1
=Ep = NzlED [en] =Ep [en]'
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Unbiasedness of E.,

@ So what is Eplen]?

Eplen] = E'D,,,(x,,,y,,)[en] decouple D

= IlZ’anE(xmyn)[e(g; (xn); yn)l

= Ep,E(x,.y,) [ Evar(gr )]

= Ep,Eout(g,) unbisedness of E,,;
= Eou(N —1). expectation of D,

e So,
ED[ECV] = Eout(N - ]-)

@ That means: E., is an unbiased estimate of Eyui(N — 1)

@ Remark: This gives us the mean of E.,. The variance is a lot harder because D, and D,
overlaps.
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