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Overcoming Overfit

Regularization is one weapon to combat overfitting.

Constrains the learning algorithm to improve out-sample error when noise is present.

Regularization is as much an art as it is a science.
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Regularization from VC Analysis

Eout(h) ≤ Ein(h) + Ω(H), for all h ∈ H (1)

Model complexity penalty Ω(H)

If you want Eout(h) to be small, better to make Ω(H) small

Roughly speaking, fit data using a “simple” h from H
So you are effectively minimizing

minimize
h

Ein(h) + Ω(h),

That is, instead of minimizing Ein(h) only, you minimize Ω(h) too
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Example

One regularization technique is weight decay.
Measures the complexity of a hypothesis h by the size of the coefficients used to represent
h (e.g., in a linear model).
This technique prefers mild lines with small offset and slope.
Applying this concept to the sine example before, trying to fit N = 2 data points, using
H1 (the set of lines).
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Example

Recall the constant model: Fit the two data points using a constant line.

Constant model has Eout = 0.75

Unregularized model has Eout = 1.90

Regularized model has Eout = 0.56

Bias-variance: Improve variance but suffer from bias. Overall is better.
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Why Need Regularization?

The linear model is too sophisticated for the amount of data we have.

A line can fit any two points!

This problem is still here even if we change the target function.

The need of regularization depends on quantity of data, and quality of data.

Given only two points, we can either choose

a simple model, e.g., constant model
to constrain the model, e.g., weight decay

Constraining the model gives us more flexibility.
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Soft Order Constraint

Consider the following example

H = set of polynomials in one variable x ∈ [−1, 1].
E.g., h(x) = 2x2 + 3x + 7.
Want to express h(x) using basis function.
Basis functions for polynomials are Legendre polynomials Lq(x), q = 1, 2, . . .
So, any h(x) can be expressed as

h(x) =
Q∑

q=1

wqLq(x) (2)
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Soft Order Constraint

This model is indeed linear! (Why?)

You define a nonlinear transform Φ,

z = Φ(x) =


1

L1(x)
...

LQ(x)


The hypothesis set is

HQ =

{
h

∣∣∣∣h(x) = wTz =
Q∑

q=0

wqLq(x)

}
So now you can define training error (for linear regression) as

Ein(w) =
1

N

N∑
n=1

(wTzn − yn)2
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Soft Order Constraint

There are multiple ways of constraining the weights.

Hard constraint:

Force coefficients to be zero.
For example,

H2 = {w | w ∈ H10;wq = 0, forq ≥ 3}.

Soft constraint:

Force coefficients to be small.
For example,

Q∑
q=0

w2
q ≤ C

It encourages weights to be small without changing the order of the polynomial by explicitly
forcing some weights to zero.
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VC Perspective of Soft Order Constraint

The optimization is

minimize
w

Ein(w) subject to wTw ≤ C (3)

We know Ein(w) = 1
N ‖Zw − y‖2

The hypothesis set is

H(C ) = {h | h(x) = wTz , wTw ≤ C}

So the optimization is equivalent to minimize Ein over H(C )

If C1 < C2, then H(C1) ⊂ H(C2) and dvc(H(C1)) ≤ dvc(H(C2))

So we should expect better generalization with H(C1)
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Solving the Soft Order Constraint Problem

The optimization problem is

minimize
w

1

N
‖Zw − y‖2 subject to wTw ≤ C (4)

Using Lagrangian techniques we can show that the minimization is equivalent to

minimize
w

Ein(w) +
λC
N

wTw

for some choices of λC .
You can further change the constraint to

Q∑
q=0

γqw
2
q ≤ C

γq = q or γq = eq encourages a low-order fit
γq = (1 + q)−1 or γq = e−q encourages a high-order fit
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Augmented Error

Another type of regularization is augmented error

Eaug(w) = Ein(w) + λwTw (5)

Unconstrained minimization is often easier than constrained minimization

But you are paying the price of interpretability

For a given C , soft order constraint corresponds to selecting a hypothesis from a smaller
set H(C )

VC analysis says we will get a better generalization when C decreases (but not too much)

The optimal C is sum square magnitude we allow.

For augmented error, you need to find the optimal parameter λ∗

This is not very interpretable.
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VC Perspective of Augmented Error

The augmented error for a hypothesis h ∈ H is

Eaug(h, λ,Ω) = Ein(h) +
λ

N
Ω(h) (6)

Here, Ω(h) = wTw
There are two components of the penalty:

The regularizer Ω(h) which penalizes a particular property of h
The regularization parameter λ which controls the amount of regularization

As N increases, the need for regularization goes down

This equation resembles VC bound
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Choice of λ
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Choosing a Regularization: Pill or Poisson?

Regularization = choose Ω(h) and λ.

Choice of Ω(h) is heuristic.

Finding a perfect Ω is as difficult as finding a perfect H.

Some forms of regularization work and some do not.

Too little: Underfitting. Too much: Overfitting/

Why bother with regularization if so many choices can go wrong?

Regularization is a necessary evil.

If our model is too sophisticated for the amount of data we have, we are doomed.

By applying regularization, we have a chance.
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Overfit and Underfit

Consider a 15-th order polynomial. So H15.
Two choices of regularization:

Uniform regularization: Ωuniform(w) =
∑15

q=0 w
2
q

Low-order regularization: Ωlow(w) =
∑15

q=0 qw
2
q

When λ too small, overfit. When λ too large, underfit.
For optimal λ, the two are quite similar.
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Regularization on Noise and Target Complexity

Let us analyze the impact of regularization to noise

Noise: Uncertainty in each measured data. Measured in terms of σ2.
If you have noise, then you need to adjust λ depending on the noise level.
Target complexity: Suppose data comes from H15 but you use H50. Measured in terms of
Qf .
Like noise, you need to adjust λ to optimize generalization.
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What if Picked a Wrong Regularization?

Suppose we should encourage low-order coefficients, but the regularization promotes
high-order coefficients.
Are we screwed?
No, you still have the regularization parameter λ.
Below is an example.
Choosing the regularization parameter can be done using validation. Will discuss next.
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Summary

Whenever you train a model, try including regularization.

It can be as simple as wTw .

Helps dramatically when there is noise in data, not enough data, complex target.

Hand-waving argument: noise is high frequency. Complex target is also high frequency.

So low-frequency regularization helps.

As long as you have a good λ, the benefit of regularization is often more than the harm.

Modern deep learning can easily incorporate regularization.

E.g., you can regularize the magnitude of the network weights, or number of non-zeros
through sparsity.
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Reading List

Yaser Abu-Mostafa, Learning from Data, chapter 4.2

Stanford CS 229 http://cs229.stanford.edu/notes/cs229-notes5.pdf
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