ECE595 / STAT598: Machine Learning I Lecture 31 Regularization

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

- Lecture 30 Overfit
- Lecture 31 Regularization
- Lecture 32 Validation

Today's Lecture:

- Motivation for Regularization
 - VC Analysis
 - Example
- Two Regularization Techniques
 - Weight Decay
 - Augmented Error
- Choosing a Regularization
 - Pill or Poisson?
 - $\bullet~{\rm Role}~{\rm of}~\lambda$

Overcoming Overfit

- Regularization is one weapon to combat overfitting.
- Constrains the learning algorithm to improve out-sample error when noise is present.
- Regularization is as much an art as it is a science.

Regularization from VC Analysis

$E_{ ext{out}}(h) \leq E_{ ext{in}}(h) + \Omega(\mathcal{H}), \qquad ext{for all } h \in \mathcal{H}$

- Model complexity penalty $\Omega(\mathcal{H})$
- If you want $E_{\mathrm{out}}(h)$ to be small, better to make $\Omega(\mathcal{H})$ small
- Roughly speaking, fit data using a "simple" h from $\mathcal H$
- So you are effectively minimizing

minimize $E_{in}(h) + \Omega(h)$,

• That is, instead of minimizing $E_{in}(h)$ only, you minimize $\Omega(h)$ too

(1)

Example

- One regularization technique is weight decay.
- Measures the complexity of a hypothesis *h* by the size of the coefficients used to represent *h* (e.g., in a linear model).
- This technique prefers mild lines with small offset and slope.
- Applying this concept to the sine example before, trying to fit N = 2 data points, using \mathcal{H}_1 (the set of lines).

Example

- Recall the constant model: Fit the two data points using a constant line.
- Constant model has $E_{out} = 0.75$
- Unregularized model has $E_{\rm out} = 1.90$
- Regularized model has $E_{out} = 0.56$
- Bias-variance: Improve variance but suffer from bias. Overall is better.

Why Need Regularization?

- The linear model is too sophisticated for the amount of data we have.
- A line can fit any two points!
- This problem is still here even if we change the target function.
- The need of regularization depends on quantity of data, and quality of data.
- Given only two points, we can either choose
 - a simple model, e.g., constant model
 - to constrain the model, e.g., weight decay
- Constraining the model gives us more flexibility.

Outline

- Lecture 30 Overfit
- Lecture 31 Regularization
- Lecture 32 Validation

Today's Lecture:

- Motivation for Regularization
 - VC Analysis
 - Example
- Two Regularization Techniques
 - Weight Decay
 - Augmented Error
- Choosing a Regularization
 - Pill or Poisson?
 - $\bullet~{\rm Role}~{\rm of}~\lambda$

Soft Order Constraint

Consider the following example

- $\mathcal{H} =$ set of polynomials in one variable $x \in [-1, 1]$.
- E.g., $h(x) = 2x^2 + 3x + 7$.
- Want to express h(x) using basis function.
- Basis functions for polynomials are Legendre polynomials $L_q(x)$, q = 1, 2, ...
- So, any h(x) can be expressed as

$$h(x) = \sum_{q=1}^{Q} w_q L_q(x) \tag{2}$$

Soft Order Constraint

This model is indeed linear! (Why?)

• You define a nonlinear transform Φ ,

$$oldsymbol{z} = \Phi(x) = egin{bmatrix} 1 \ L_1(x) \ dots \ L_Q(x) \end{bmatrix}$$

• The hypothesis set is

$$\mathcal{H}_Q = \left\{ h \middle| h(x) = \boldsymbol{w}^T \boldsymbol{z} = \sum_{q=0}^Q w_q L_q(x) \right\}$$

• So now you can define training error (for linear regression) as

$$E_{\rm in}(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} (\boldsymbol{w}^T \boldsymbol{z}_n - y_n)^2$$

C Stanley Chan 2020. All Rights Reserved

Soft Order Constraint

There are multiple ways of constraining the weights.

- Hard constraint:
 - Force coefficients to be zero.
 - For example,

$$\mathcal{H}_2 = \{ \boldsymbol{w} \mid \boldsymbol{w} \in \mathcal{H}_{10}; w_q = 0, \text{for } q \geq 3 \}.$$

- Soft constraint:
 - Force coefficients to be small.
 - For example,

$$\sum_{q=0}^{Q} w_q^2 \leq C$$

• It encourages weights to be small without changing the order of the polynomial by explicitly forcing some weights to zero.

VC Perspective of Soft Order Constraint

• The optimization is

$$\min_{\boldsymbol{w}} \operatorname{E_{in}}(\boldsymbol{w}) \quad \text{subject to} \quad \boldsymbol{w}^{\mathsf{T}} \boldsymbol{w} \leq C$$

$$ullet$$
 We know $\mathit{E}_{\mathsf{in}}(oldsymbol{w}) = rac{1}{N} \|oldsymbol{Z}oldsymbol{w} - oldsymbol{y}\|^2$

• The hypothesis set is

$$\mathcal{H}(C) = \{h \mid h(x) = \boldsymbol{w}^{T} \boldsymbol{z}, \ \boldsymbol{w}^{T} \boldsymbol{w} \leq C\}$$

- So the optimization is equivalent to minimize E_{in} over $\mathcal{H}(C)$
- If $C_1 < C_2$, then $\mathcal{H}(C_1) \subset \mathcal{H}(C_2)$ and $d_{\mathsf{vc}}(\mathcal{H}(C_1)) \leq d_{\mathsf{vc}}(\mathcal{H}(C_2))$
- So we should expect better generalization with $\mathcal{H}(C_1)$

(3)

Solving the Soft Order Constraint Problem

The optimization problem is

minimize
$$\frac{1}{N} \| \boldsymbol{Z} \boldsymbol{w} - \boldsymbol{y} \|^2$$
 subject to $\boldsymbol{w}^T \boldsymbol{w} \leq C$ (4)

• Using Lagrangian techniques we can show that the minimization is equivalent to

$$\underset{\boldsymbol{w}}{\text{minimize}} \quad E_{\text{in}}(\boldsymbol{w}) + \frac{\lambda_C}{N} \boldsymbol{w}^T \boldsymbol{w}$$

for some choices of λ_C .

• You can further change the constraint to

$$\sum_{q=0}^{Q} \gamma_q w_q^2 \le C$$

• $\gamma_q = q$ or $\gamma_q = e^q$ encourages a low-order fit • $\gamma_q = (1+q)^{-1}$ or $\gamma_q = e^{-q}$ encourages a high-order fit

Augmented Error

Another type of regularization is augmented error

$$E_{\text{aug}}(\boldsymbol{w}) = E_{\text{in}}(\boldsymbol{w}) + \lambda \boldsymbol{w}^{T} \boldsymbol{w}$$
(5)

- Unconstrained minimization is often easier than constrained minimization
- But you are paying the price of interpretability
- For a given C, soft order constraint corresponds to selecting a hypothesis from a smaller set $\mathcal{H}(C)$
- VC analysis says we will get a better generalization when C decreases (but not too much)
- The optimal C is sum square magnitude we allow.
- \bullet For augmented error, you need to find the optimal parameter λ^*
- This is not very interpretable.

VC Perspective of Augmented Error

The augmented error for a hypothesis $h \in \mathcal{H}$ is

$$E_{\text{aug}}(h,\lambda,\Omega) = E_{\text{in}}(h) + \frac{\lambda}{N}\Omega(h)$$
(6)

- Here, $\Omega(h) = \boldsymbol{w}^T \boldsymbol{w}$
- There are two components of the penalty:
 - The regularizer $\Omega(h)$ which penalizes a particular property of h
 - ${\ensuremath{\, \bullet \,}}$ The regularization parameter λ which controls the amount of regularization
- As N increases, the need for regularization goes down
- This equation resembles VC bound

Choice of λ

Outline

- Lecture 30 Overfit
- Lecture 31 Regularization
- Lecture 32 Validation

Today's Lecture:

- Motivation for Regularization
 - VC Analysis
 - Example
- Two Regularization Techniques
 - Weight Decay
 - Augmented Error
- Choosing a Regularization
 - Pill or Poisson?
 - $\bullet \ \, {\rm Role} \ \, {\rm of} \ \, \lambda$

Choosing a Regularization: Pill or Poisson?

- Regularization = choose $\Omega(h)$ and λ .
- Choice of $\Omega(h)$ is heuristic.
- Finding a perfect Ω is as difficult as finding a perfect $\mathcal{H}.$
- Some forms of regularization work and some do not.
- Too little: Underfitting. Too much: Overfitting/
- Why bother with regularization if so many choices can go wrong?
- Regularization is a **necessary** evil.
- If our model is too sophisticated for the amount of data we have, we are doomed.
- By applying regularization, we have a chance.

Overfit and Underfit

- Consider a 15-th order polynomial. So \mathcal{H}_{15} .
- Two choices of regularization:
 - Uniform regularization: $\Omega_{\text{uniform}}(\boldsymbol{w}) = \sum_{q=0}^{15} w_q^2$ Low-order regularization: $\Omega_{\text{low}}(\boldsymbol{w}) = \sum_{q=0}^{15} q w_q^2$
- When λ too small, overfit. When λ too large, underfit.
- For optimal λ , the two are quite similar.

Regularization on Noise and Target Complexity

Let us analyze the impact of regularization to noise

- Noise: Uncertainty in each measured data. Measured in terms of σ^2 .
- \bullet If you have noise, then you need to adjust λ depending on the noise level.
- Target complexity: Suppose data comes from \mathcal{H}_{15} but you use \mathcal{H}_{50} . Measured in terms of Q_f .
- \bullet Like noise, you need to adjust λ to optimize generalization.

What if Picked a Wrong Regularization?

- Suppose we should encourage low-order coefficients, but the regularization promotes high-order coefficients.
- Are we screwed?
- No, you still have the regularization parameter λ .
- Below is an example.
- Choosing the regularization parameter can be done using validation. Will discuss next.

C Stanley Chan 2020. All Rights Reserved.

- Whenever you train a model, try including regularization.
- It can be as simple as $\boldsymbol{w}^T \boldsymbol{w}$.
- Helps dramatically when there is noise in data, not enough data, complex target.
- Hand-waving argument: noise is high frequency. Complex target is also high frequency.
- So low-frequency regularization helps.
- As long as you have a good λ , the benefit of regularization is often more than the harm.
- Modern deep learning can easily incorporate regularization.
- E.g., you can regularize the magnitude of the network weights, or number of non-zeros through sparsity.

- Yaser Abu-Mostafa, Learning from Data, chapter 4.2
- Stanford CS 229 http://cs229.stanford.edu/notes/cs229-notes5.pdf