ECE595 / STAT598: Machine Learning I
 Lecture 29 Bias and Variance

Spring 2020
Stanley Chan

School of Electrical and Computer Engineering
Purdue University

PURDUE
 UNIVERSITY

Outline

- Lecture 28 Sample and Model Complexity
- Lecture 29 Bias and Variance
- Lecture 30 Overfit

Today's Lecture:

- From VC Analysis to Bias-Variance
- Generalization Bound
- Bias-Variance Decomposition
- Interpreting Bias-Variance
- Example
- 0-th order vs 1-st order model
- Trade off

Generalizing the Generalization Bound

Theorem (Generalization Bound)
For any tolerance $\delta>0$

$$
E_{\text {out }}(g) \leq E_{\text {in }}(g)+\sqrt{\frac{8}{N} \log \frac{4 m_{\mathcal{H}}(2 \mathrm{~N})}{\delta}}
$$

with probability at least $1-\delta$.

- g : final hypothesis
- $m_{\mathcal{H}}(N)$: how complex is your model
- d_{VC} : parameter defining $m_{\mathcal{H}}(N) \leq N^{d_{\mathrm{VC}}}+1$
- Large $d_{\mathrm{VC}}=$ more complex
- So more difficult to train, and hence require more training samples

Trade-off Curve

VC Analysis

- VC analysis is a decomposition.
- Decompose $E_{\text {out }}$ into $E_{\text {in }}$ and ϵ.

$$
E_{\mathrm{out}} \leq E_{\mathrm{in}}+\underbrace{\sqrt{\frac{8}{N} \log \frac{4\left((2 N)^{d_{\mathrm{Vc}}}+1\right)}{\delta}}}_{=\epsilon}
$$

- $E_{\text {in }}=$ training error, $\epsilon=$ penalty of complex model.
- Bias and variance is another decomposition.
- Decompose $E_{\text {out }}$ into
- How well can \mathcal{H} approximate f ?
- How well can we zoom in a good h in \mathcal{H} ?
- Roughly speaking we will have

$$
E_{\text {out }}=\text { bias }+ \text { variance }
$$

From VC Analysis to Bias-Variance

- In VC analysis we define the out-sample error as

$$
E_{\mathrm{out}}(g)=\mathbb{P}[g(\boldsymbol{x}) \neq f(\boldsymbol{x})]
$$

- Let $B=\{g(\boldsymbol{x}) \neq f(\boldsymbol{x})\}$ be the bad event. $B \in\{0,1\}$.
- Then this is equal to

$$
\begin{aligned}
E_{\text {out }}(g) & =\mathbb{P}[B=1] \\
& =1 \cdot \mathbb{P}[B=1]+0 \cdot \mathbb{P}[B=0] \\
& =\mathbb{E}[B] .
\end{aligned}
$$

- So $E_{\text {out }}(g)$ can be written as

$$
E_{\mathrm{out}}(g)=\mathbb{E}_{\boldsymbol{x}}[\mathbf{1}\{g(\boldsymbol{x}) \neq f(\boldsymbol{x})\}]
$$

- Expectation taken over all $\boldsymbol{x} \sim p(\boldsymbol{x})$.

Changing the Error Measure

- In VC analysis we define the out-sample error as

$$
E_{\mathrm{out}}(g)=\mathbb{E}_{\boldsymbol{x}}[1\{g(x) \neq f(x)\}]
$$

- Expectation of a 0-1 loss.
- In Bias-variance analysis we define the out-sample error as

$$
E_{\mathrm{out}}(g)=\mathbb{E}_{\boldsymbol{x}}\left[(g(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right]
$$

- Expectation of a square loss.
- Square loss is differentiable.

Dependency on Training Set

- In VC analysis we define the out-sample error as

$$
E_{\text {out }}\left(g^{(\mathcal{D})}\right)=\mathbb{E}_{\boldsymbol{x}}\left[\mathbf{1}\left\{g^{(\mathcal{D})}(\boldsymbol{x}) \neq f(\boldsymbol{x})\right\}\right]
$$

- The final hypothesis depends on \mathcal{D}.
- If you use a different \mathcal{D}, your g will be different.
- In Bias-variance analysis we define the out-sample error as

$$
E_{\text {out }}\left(g^{(\mathcal{D})}\right)=\mathbb{E}_{\boldsymbol{x}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]
$$

- Why did we skip \mathcal{D} in VC analysis?
- Hoeffding bound is uniform for all \mathcal{D}
- So it does not matter which \mathcal{D} you used to generate g
- Not true for bias-variance

Averaging over all \mathcal{D}

- To account for all the possible \mathcal{D} 's, compute the expectation and define the expected out-sample error.

$$
\mathbb{E}_{\mathcal{D}}\left[E_{\text {out }}\left(g^{(\mathcal{D})}\right)\right]=\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\boldsymbol{x}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right]
$$

- $E_{\text {out }}\left(g^{(\mathcal{D})}\right)$: Out-sample error for the particular g found from \mathcal{D}
- $\mathbb{E}_{\mathcal{D}}\left[E_{\text {out }}\left(g^{(\mathcal{D})}\right)\right]$: Out-sample error averaged over all possible \mathcal{D} 's
- VC trade-off is a "worst case" analysis
- Uniform bound on every \mathcal{D}
- Bias-variance trade-off is an "average" analysis
- Average over different \mathcal{D} 's

Decomposing $\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)$

- To account for all the possible \mathcal{D}^{\prime} s, compute the expectation and define the expected out-sample error.

$$
\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right]=\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right]
$$

- Let us do some calculation

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right] \\
& =\mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right] \\
& =\mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}-2 g^{(\mathcal{D})}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right]\right] \\
& =\mathbb{E}_{x}[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-2 \underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})\right]}_{\bar{g}(\boldsymbol{x})} f(\boldsymbol{x})+f(\boldsymbol{x})^{2}] .
\end{aligned}
$$

The Average $\bar{g}(x)$

- The decomposition gives

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{x}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right] \\
& =\mathbb{E}_{\boldsymbol{x}}[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-2 \underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})\right]}_{\bar{g}(\boldsymbol{x})} f(\boldsymbol{x})+f(\boldsymbol{x})^{2}]
\end{aligned}
$$

- We define the term

$$
\bar{g}(\boldsymbol{x})=\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})\right]
$$

- The asymptotic limit of the estimate

$$
\bar{g}(x) \approx \frac{1}{K} \sum_{k=1}^{K} g^{\left(\mathcal{D}_{k}\right)}(x)
$$

- $g^{\left(\mathcal{D}_{k}\right)}$ are inside the hypothesis set. But \bar{g} is not necessarily inside.

Bias and Variance

- Do some additional calculation

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] \\
= & \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-2 \mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})\right] f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right] \\
= & \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right] \\
= & \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}+\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right] \\
= & \mathbb{E}_{x}[\underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}}_{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(x)\right)^{2}\right]}+\underbrace{\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}}_{(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}}] .
\end{aligned}
$$

- Define two terms

$$
\begin{aligned}
& \operatorname{bias}(\boldsymbol{x}) \stackrel{\text { def }}{=}(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \\
& \operatorname{var}(\boldsymbol{x}) \stackrel{\text { def }}{=} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]
\end{aligned}
$$

Bias and Variance

- The decomposition:

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\mathrm{out}}\left(g^{(\mathcal{D})}\right)\right] \\
= & \mathbb{E}_{\boldsymbol{x}}[\underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}}_{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]}+\underbrace{\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}}_{(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}}]
\end{aligned}
$$

- Define two terms

$$
\begin{aligned}
\operatorname{bias}(\boldsymbol{x}) & \stackrel{\text { def }}{=}(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \\
\operatorname{var}(\boldsymbol{x}) & \stackrel{\text { def }}{=} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]
\end{aligned}
$$

- Take expectation

$$
\begin{aligned}
\operatorname{bias} & =\mathbb{E}_{x}[\operatorname{bias}(\boldsymbol{x})]=\mathbb{E}_{\boldsymbol{x}}\left[(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right] \\
\operatorname{var} & =\mathbb{E}_{x}[\operatorname{var}(\boldsymbol{x})]=\mathbb{E}_{x}\left[\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]\right] .
\end{aligned}
$$

Bias and Variance Decomposition

- The decomposition:

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] \\
= & \mathbb{E}_{x}[\underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}}_{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]}+\underbrace{\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}}_{(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}}] .
\end{aligned}
$$

- This gives

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] & =\mathbb{E}_{\boldsymbol{x}}[\operatorname{bias}(\boldsymbol{x})+\operatorname{var}(\boldsymbol{x})] \\
& =\operatorname{bias}+\operatorname{var}
\end{aligned}
$$

Interpreting the Bias-Variance

- The decomposition:

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\text {out }}\left(g^{(\mathcal{D})}\right)\right] \\
= & \mathbb{E}_{\boldsymbol{x}}[\underbrace{\mathbb{E}_{\mathcal{D}}\left[g^{(\mathcal{D})}(\boldsymbol{x})^{2}\right]-\bar{g}(\boldsymbol{x})^{2}}_{\mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]}+\underbrace{\bar{g}(\boldsymbol{x})^{2}-2 \bar{g}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}}_{(\bar{g}(x)-f(\boldsymbol{x}))^{2}}] .
\end{aligned}
$$

- The two terms:

$$
\begin{aligned}
\operatorname{bias}(\boldsymbol{x}) & \stackrel{\text { def }}{=}(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \\
\operatorname{var}(\boldsymbol{x}) & \stackrel{\text { def }}{=} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right]
\end{aligned}
$$

- bias (\boldsymbol{x}) : How close is the average function \bar{g} to the target
- $\operatorname{var}(\boldsymbol{x})$: How much uncertainty you have around \bar{g}

Model Complexity

- The bias and variance are

$$
\begin{aligned}
& \operatorname{bias}(\boldsymbol{x}) \stackrel{\text { def }}{=}(\bar{g}(\boldsymbol{x})-f(\boldsymbol{x}))^{2} \\
& \operatorname{var}(\boldsymbol{x}) \stackrel{\text { def }}{=} \mathbb{E}_{\mathcal{D}}\left[\left(g^{(\mathcal{D})}(\boldsymbol{x})-\bar{g}(\boldsymbol{x})\right)^{2}\right] .
\end{aligned}
$$

- If you have a simple \mathcal{H}, then large bias but small variance
- If you have a complex \mathcal{H}, then small bias but large variance

Outline

- Lecture 28 Sample and Model Complexity
- Lecture 29 Bias and Variance
- Lecture 30 Overfit

Today's Lecture:

- From VC Analysis to Bias-Variance
- Generalization Bound
- Bias-Variance Decomposition
- Interpreting Bias-Variance
- Example
- 0-th order vs 1-st order model
- Trade off

Example

- Consider a $\sin (\cdot)$ function

$$
f(x)=\sin (\pi x)
$$

- You are only given $N=2$ training samples
- These two samples are sampled uniformly in $[-1,1]$.
- Call them $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2})
- Hypothesis Set 0: $\mathcal{M}_{0}=$ Set of all lines of the form $h(x)=b$;
- Hypothesis Set 1: $\mathcal{M}_{1}=$ Set of all lines of the form $h(x)=a x+b$.
- Which one fits better?

Example

- If you give me two points, I can tell you the fitted lines
- For \mathcal{M}_{0} :

$$
h(x)=\frac{y_{1}+y_{2}}{2} .
$$

- For \mathcal{M}_{1} :

$$
h(x)=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x+\left(y_{1} x_{2}-y_{2} x_{1}\right) .
$$

Out-sample Error $E_{\text {out }}$

- If you use \mathcal{M}_{1}
- Then you get this
- $E_{\text {out }}=0.2$

Out-sample Error $E_{\text {out }}$

- If you use \mathcal{M}_{0}
- Then you get this
- $E_{\text {out }}=0.5$

Scan through \mathcal{D}

- Now draw a different training set
- Then you have a different curve every time
- Plot them all on the same figure
- Here is what you will get

Scan through \mathcal{D}

- Now draw a different training set
- Then you have a different curve every time
- Plot them all on the same figure
- Here is what you will get

Limiting Case

- Draw infinitely many training sets
- You will have two quantities
- $\bar{g}(x)$: The average line
- $\sqrt{\operatorname{var}(x)}$: The variance

bias $=0.50$
$\mathrm{var}=\mathbf{0 . 2 5}$
bias $=0.21$
$\mathrm{var}=1.69$

How Come!

$$
\text { bias }=0.50 \quad \text { var }=0.25
$$

$$
\text { bias }=0.21 \quad \text { var }=1.69
$$

- $\bar{g}(\boldsymbol{x})$ is a good average.
- But the error bar is big!
- Analogy: I have a powerful canon but not very accurate.

Learning Curve

- Expected out-sample error: $E_{\text {out }}\left(g^{(\mathcal{D})}\right)$
- Expected in-sample error: $E_{\text {in }}\left(g^{(\mathcal{D})}\right)$
- How do they change with N ?

VC vs Bias-Variance

- VC analysis is independent of \mathcal{A}
- Bias-variance depends on \mathcal{A}
- With the same \mathcal{H}, VC always returns the same generalization bound
- Guarantee over all possible choices of dataset \mathcal{D}
- Bias-variance: For the same \mathcal{H}, you can have different $g^{(\mathcal{D})}$
- Depend on \mathcal{D}, you have a different $E_{\text {out }}\left(g^{(\mathcal{D})}\right)$
- Therefore we take expectation

$$
\mathbb{E}_{\mathcal{D}}\left[E_{\text {out }}\left(g^{(\mathcal{D})}\right)\right]
$$

- In practice, bias and variance cannot be computed
- You do not have f
- It is a conceptual tool to design algorithms

Reading List

- Yasar Abu-Mostafa, Learning from Data, chapter 2.2
- Chris Bishop, Pattern Recognition and Machine Intelligence, chapter 3.2
- Duda, Hart and Stork, Pattern Classification, chapter 9.3
- Stanford STAT202 https://web.stanford.edu/class/stats202/content/lec2.pdf
- CMU 10-601 https://www.cs.cmu.edu/~wcohen/10-601/bias-variance.pdf
- UCSD 271A http://www.svcl.ucsd.edu/courses/ece271A/handouts/ML2.pdf

Appendix

Case Study: Linear Regression

- You are given a training dataset
- $\mathcal{D}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
- Train a linear regression model

$$
\begin{aligned}
\widehat{\boldsymbol{w}} & =\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N}\left(\boldsymbol{x}_{n}^{T} \boldsymbol{w}-y_{n}\right)^{2} \\
& =\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{N}\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|^{2}
\end{aligned}
$$

- What is the in-sample error?
- What is the out-sample error?

In-Sample Error

- In-sample error is

$$
E_{\text {in }}(\widehat{\boldsymbol{w}})=\frac{1}{N}\|\boldsymbol{X} \widehat{\boldsymbol{w}}-\boldsymbol{y}\|^{2}
$$

- What is $\widehat{\boldsymbol{w}}$?
- Take derivative, setting to zero:

$$
\frac{d}{d \boldsymbol{w}}\|\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y}\|^{2}=2 \boldsymbol{X}^{T}(\boldsymbol{X} \boldsymbol{w}-\boldsymbol{y})=\mathbf{0}
$$

- Solution is

$$
\widehat{\boldsymbol{w}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}
$$

- So In-Sample error is

$$
\begin{aligned}
E_{\text {in }}(\widehat{\boldsymbol{w}}) & =\frac{1}{N}\|\boldsymbol{X} \widehat{\boldsymbol{w}}-\boldsymbol{y}\|^{2} \\
& =\frac{1}{N}\left\|\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}-\boldsymbol{y}\right\|^{2}
\end{aligned}
$$

Modeling the Input

- Define

$$
\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}
$$

- Can show that $\boldsymbol{H}^{k}=\boldsymbol{H}$ for any $k>0$, and $\boldsymbol{H}=\boldsymbol{H}^{T}$.
- $\operatorname{Tr}(\boldsymbol{H})=d+1$.
- Assume $\boldsymbol{y}=\boldsymbol{X}^{\top} \boldsymbol{w}^{*}+\boldsymbol{\epsilon}$, then

$$
\begin{aligned}
\widehat{\boldsymbol{y}} & \stackrel{\text { def }}{=} \boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y} \\
& =\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}\left(\boldsymbol{X} \boldsymbol{w}^{*}+\boldsymbol{\epsilon}\right) \\
& =\boldsymbol{X} \boldsymbol{w}^{*}+\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\epsilon} \\
& =\boldsymbol{X} \boldsymbol{w}^{*}+\boldsymbol{H} \boldsymbol{\epsilon}
\end{aligned}
$$

- Residue is

$$
\begin{aligned}
\widehat{\boldsymbol{y}}-\boldsymbol{y} & =\left(\boldsymbol{X} \boldsymbol{w}^{*}+\boldsymbol{H} \boldsymbol{\epsilon}\right)-\left(\boldsymbol{X}^{T} \boldsymbol{w}^{*}+\boldsymbol{\epsilon}\right) \\
& =(\boldsymbol{H}-\boldsymbol{I}) \boldsymbol{\epsilon}
\end{aligned}
$$

In-Sample Error

- In-sample error is

$$
\begin{aligned}
E_{\text {in }}(\widehat{\boldsymbol{w}}) & =\frac{1}{N}\left\|\boldsymbol{X}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}-\boldsymbol{y}\right\|^{2} \\
& =\frac{1}{N}\|\widehat{\boldsymbol{y}}-\boldsymbol{y}\|^{2}=\frac{1}{N} \boldsymbol{\epsilon}^{T}(\boldsymbol{H}-\boldsymbol{I})^{T}(\boldsymbol{H}-\boldsymbol{I}) \boldsymbol{\epsilon} \\
& =\frac{1}{N} \epsilon^{T}(\boldsymbol{H}-\boldsymbol{I}) \boldsymbol{\epsilon}
\end{aligned}
$$

- Take expectation over \mathcal{D} yields

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[E_{\text {in }}(\widehat{\boldsymbol{w}})\right] & =\mathbb{E}\left[\frac{1}{N} \boldsymbol{\epsilon}^{T}(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{\epsilon}\right] \\
& =\frac{1}{N} \operatorname{Tr}(\boldsymbol{I}-\boldsymbol{H}) \mathbb{E}\left[\boldsymbol{\epsilon} \boldsymbol{\epsilon}^{T}\right] \\
& =\frac{\sigma^{2}}{N} \operatorname{Tr}(\boldsymbol{I}-\boldsymbol{H})=\frac{\sigma^{2}}{N}(d+1-N)=\sigma^{2}\left(1-\frac{d+1}{N}\right) .
\end{aligned}
$$

Out-Sample

- We study a simplified case: The out-samples are $\left(x_{1}, y_{1}^{\prime}\right), \ldots,\left(x_{N}, y_{N}^{\prime}\right)$.
- Assume $\boldsymbol{y}^{\prime}=\boldsymbol{X} \boldsymbol{w}^{*}+\boldsymbol{\epsilon}^{\prime}$.
- $E_{\text {out }}$ is

$$
E_{\mathrm{out}}(\widehat{\boldsymbol{w}})=\frac{1}{N}\left\|\widehat{\boldsymbol{y}}-\boldsymbol{y}^{\prime}\right\|^{2}=\frac{1}{N}\left\|\boldsymbol{H} \boldsymbol{\epsilon}-\boldsymbol{\epsilon}^{\prime}\right\|^{2}
$$

- $\mathbb{E}_{\mathcal{D}}\left[E_{\text {out }}(\widehat{\boldsymbol{w}})\right]$ is

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}}\left[E_{\text {out }}(\widehat{\boldsymbol{w}})\right] & =\frac{1}{N} \mathbb{E}_{\mathcal{D}}\left[\boldsymbol{\epsilon}^{T} \boldsymbol{H}^{T} \boldsymbol{H} \boldsymbol{\epsilon}+\left\|\boldsymbol{\epsilon}^{\prime}\right\|^{2}\right] \\
& =\frac{1}{N}\left\{\mathbb{E}_{\mathcal{D}}\left[\boldsymbol{\epsilon}^{T} \boldsymbol{H}^{T} \boldsymbol{H} \boldsymbol{\epsilon}\right]+\mathbb{E}_{\mathcal{D}}\left[\boldsymbol{\epsilon}^{\prime} \boldsymbol{\epsilon}^{\prime T}\right]\right\} \\
& =\frac{1}{N}\left\{\sigma^{2}(d+1)+\sigma^{2} N\right\}=\sigma^{2}\left(1+\frac{d+1}{N}\right) .
\end{aligned}
$$

