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]
Outline

@ Lecture 28 Sample and Model Complexity
@ Lecture 29 Bias and Variance
@ Lecture 30 Overfit

Today’s Lecture:
@ From VC Analysis to Bias-Variance
e Generalization Bound
o Bias-Variance Decomposition
o Interpreting Bias-Variance
@ Example

o 0O-th order vs 1-st order model
e Trade off
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Generalizing the Generalization Bound

Theorem (Generalization Bound)

For any tolerance § > 0

8
< E —
Eout(g) = Em(g) + \/N |Og 5 ’

with probability at least 1 — §.

@ g: final hypothesis

e my(N): how complex is your model

o dyc: parameter defining my (N) < Nve +1
o Large dyc = more complex

°

So more difficult to train, and hence require more training samples
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N
Trade-off Curve

Eout

model complexity

dve VC dimension dvc

Error
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-
VC Analysis

VC analysis is a decomposition.

Decompose Egyt into Ej, and e.

4((2N)9 1
Eout S Ein + \//?I |Og (( )5VC * )

=€

E;, = training error, € = penalty of complex model.

Bias and variance is another decomposition.
Decompose Egyt into

o How well can H approximate 7
e How well can we zoom in a good h in H?

Roughly speaking we will have

Eous = bias + variance
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From VC Analysis to Bias-Variance

o In VC analysis we define the out-sample error as

Eoui(g) = Plg(x) # f(x)]

Let B = {g(x) # f(x)} be the bad event. B € {0, 1}.
Then this is equal to

Eout(g) = P[B = 1]
=1-P[B=1]+0-P[B=0]
= E[B].

So E,ut(g) can be written as

Eoui(g) = Ex[1{g(x) # f(x)}].

Expectation taken over all x ~ p(x).
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-
Changing the Error Measure

In VC analysis we define the out-sample error as

Eoui(g) = Ex [ 1{g(x) # F(x)}]

Expectation of a 0-1 loss.

In Bias-variance analysis we define the out-sample error as

Eout(g) = Ex|(g(x) = £(x))?]-

Expectation of a square loss.

Square loss is differentiable.
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-
Dependency on Training Set

@ In VC analysis we define the out-sample error as

Eount(g ™)) = Ex |1{gP)(x) # f(x)}

@ The final hypothesis depends on D.
o If you use a different D, your g will be different.

@ In Bias-variance analysis we define the out-sample error as
Eue(™) = Ex[(€(x) ~ ().

@ Why did we skip D in VC analysis?

o Hoeffding bound is uniform for all D
e So it does not matter which D you used to generate g
o Not true for bias-variance
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Averaging over all D

@ To account for all the possible D’s, compute the expectation and define the expected
out-sample error.

Ep [Eon(e™)] = Bp [Ex[(6™(x) - F(x)?]]

Eout(g(D)): Out-sample error for the particular g found from D

Ep [Eout(g(p))]: Out-sample error averaged over all possible D's
@ VC trade-off is a “worst case” analysis
o Uniform bound on every D
@ Bias-variance trade-off is an “average” analysis
o Average over different D’s
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|
Decomposing Eq.(g™))

@ To account for all the possible D's, compute the expectation and define the expected
out-sample error.

Ep [Eou(e®)] = En [E[(e®(x) - £(x))?]].
@ Let us do some calculation
Ep [Ex[(g®(x) - f(x)?]]
— B |Ep |(gP)(x) - £(x))?]
= By [Ep g (x)? — 28D (x)f(x) + F(x)?]

—E, |Ep [g<D>(x)2] — 2Ep[g®P (x)]f(x) + F(x)?
—_—

g(x)
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-
The Average g(x)

@ The decomposition gives

Ep [ |(6P(x) - £(x))?]

= By | Ep g™ (x)?] - 2Ep[g P (x)]F(x) + F(x)?
—_———
g(x)
o We define the term
g(x) = Ep[gP)(x)]
@ The asymptotic limit of the estimate

K

_ 1

g(x) = ¢ > gPI(x)
k=1

o g(Px) are inside the hypothesis set. But g is not necessarily inside.
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Bias and Variance

@ Do some additional calculation

ED[outg( )}

= Ex [Ep g™ —2ED[g‘D) () + F(x)°]

- el st o]

= Bx [Ep g™ (x| ~ glx Y 28 (x)f(x) + F(x)?|

B [ [ (xﬂ g(x)* +g(x)* — 2g(x)f (x)+f(x)2]
Ep[(g(x)—&(x))?] (8()—f(x))?

@ Define two terms

var(x) def ]ED[(g(D)(X) - E(X))Q]- 12/34



Bias and Variance

@ The decomposition:
ED [Eout(g(p))]

= Ex|Ep |8 (x)?| - B(x)? + g(x)? = 28(x)f(x) + F(x)?].

Epl(e® (x)-2(x))’] (E0)=f(x))?
@ Define two terms
bias(x) £ (g(x) — £(x))?,
var(x) € Ep[(g®)(x) - 5(x))2.

o Take expectation
bias = E[bias(x)] = Ex [(g(x) — f(x))?] ,
var = Ex[var(x)] = Ex |Ep[(g™(x) — £(x))*]] -
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Bias and Variance Decomposition

@ The decomposition:

Ep [Eou(g)]
= Ex|Ep |8 (x)?| - 8(x)? + g(x)? = 28(x)f(x) + F(x)?].

Ep[(e®)(x)—(x))?] (E(x)—F00)?

@ This gives

Ep [Eout(g(p))] — E, [bias(x) + var(x)]

= bias + var
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Interpreting the Bias-Variance
@ The decomposition:
ED [Eout(g(p))]

= Ex|Ep | (x)?| — £(x)* + Ex)* — 28(x)f(x) + F(x)?].

Ep(g()(x)=£(x))’] (EC)—Fx))

@ The two terms:

bias(x) def (g(x) — f(x))?,
var(x) & Ep|[(g™®(x) — g(x))?].

@ bias(x): How close is the average function g to the target

@ var(x): How much uncertainty you have around g
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-
Model Complexity

"
HC\/ . \‘ bias
AN

/

@ The bias and variance are

Q.
-

bias(x) = (g(x) — f(x)),
var(x) def Ep[(gP)(x) — g(x))?].

@ If you have a simple H, then large bias but small variance

o If you have a complex H, then small bias but large variance
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@ Lecture 30 Overfit
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o Interpreting Bias-Variance
@ Example

o 0-th order vs 1-st order model
e Trade off
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Example

e Consider a sin(-) function
f(x) = sin(mx)

\ 4

You are only given N = 2 training samples

These two samples are sampled uniformly in [—1,1].

Call them (x1, y1) and (x2, y2)

Hypothesis Set 0: Mg = Set of all lines of the form h(x) = b;
Hypothesis Set 1: M;j = Set of all lines of the form h(x) = ax + b.
Which one fits better?

®© ©6 6 6 6 ¢
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Example

o If you give me two points, | can tell you the fitted lines
e For My:
h(X) — Y1 ;‘YQ

@ For Mj:

0 = (222 )t (- ).

X2 — X1
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Out-sample Error E

o If you use My
@ Then you get this
o Eyy =02

E()Hl — 0'20
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Out-sample Error E

o If you use My
@ Then you get this
® Eout =05

A lzlnu — ()'ES()
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-
Scan through D

Now draw a different training set
Then you have a different curve every time
Plot them all on the same figure

o
o
o
@ Here is what you will get

Y
Y

"z N__~

sin(7x)
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|
Scan through D

Now draw a different training set
Then you have a different curve every time
Plot them all on the same figure

o
o
o
@ Here is what you will get

Y

sin(7)
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-
Limiting Case

@ Draw infinitely many training sets
@ You will have two quantities
@ g(x): The average line

e /var(x): The variance

Y
Y

\/ ()

sin(7x) sin ()

bias = 0.50 var = 0.25 bias = 0.21 var = 1.69
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How Come!

Y
Y

\/ ()

sin(mx) sin(mr)

bias = 0.50 var = 0.25 bias = 0.21 var = 1.69

e g(x) is a good average.
o But the error bar is big!

@ Analogy: | have a powerful canon but not very accurate.
25/34



Learning Curve

o Expected out-sample error: Eyy(g(P))
o Expected in-sample error: E,(g(P))
@ How do they change with N7

5

& Eou b Eou

3 generalization error = variance

2 9

& g |_—

L Em Ijj Ein
in-sample error bias

Number of Data Points, N Number of Data Points, N

VC analysis bias-variance

26 /34



VC vs Bias-Variance

@ VC analysis is independent of A
Bias-variance depends on A

With the same H, VC always returns the same generalization bound

Bias-variance: For the same 7, you can have different g(P)

°
°

@ Guarantee over all possible choices of dataset D
°

@ Depend on D, you have a different E,y(g(P))
°

Therefore we take expectation
]ED [Eout(g(p))}

In practice, bias and variance cannot be computed

(]

You do not have f

It is a conceptual tool to design algorithms
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Reading List

Yasar Abu-Mostafa, Learning from Data, chapter 2.2

Chris Bishop, Pattern Recognition and Machine Intelligence, chapter 3.2

Duda, Hart and Stork, Pattern Classification, chapter 9.3

Stanford STAT202 https://web.stanford.edu/class/stats202/content/lec2.pdf
CMU 10-601 https://www.cs.cmu.edu/~wcohen/10-601/bias-variance.pdf
UCSD 271A http://www.svcl.ucsd.edu/courses/ece271A/handouts/ML2. pdf
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Case Study: Linear Regression

@ You are given a training dataset

o D= {(X17y1)7 ceey (XvaN)}
@ Train a linear regression model

=

w

N
~ o1
w = argmin Z(x[w — yn)?
n=1

. 1 5
- I Xw —
argmin N I Xw —y||

w

@ What is the in-sample error?

@ What is the out-sample error?
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In-Sample Error

@ In-sample error is
N 1.vA
En(W) = | X — y

o What is w?
@ Take derivative, setting to zero:

d
o Xw — y|P = 2X T (Xw ~ y) = 0.
@ Solution is
w=(XTX)"1xTy.
@ So In-Sample error is

. 1 va
Eu(#) = | X — y]?

1 _
= SIX(XTX)7XTy - y|?
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|
Modeling the Input

@ Define

H=X(XTX)"xT.
e Can show that H* = H for any k >0, and H=H".
e Tr(H)=d+ 1.
o Assume y = X w* + ¢, then

y EX(XTx) Xy

=X(XTX)IXT(Xw* +¢)
=Xw +X(X"X)'XTe
= Xw”* + He.
@ Residue is
y—y=(Xw"+He)— (X"w*+e¢)
(H—le.
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In-Sample Error
@ In-sample error is
Eul@) = 5 IX(XTX) 2 XTy — y|?
= 5~ yIP = e (H - 1) (H - D)e
= %ET(H — e
o Take expectation over D yields
Ep [6,(#)] = E | ¢T(1 - H)¢

= %Tr(l — H)E[ee]

o? o2 5 d+1
NTr(I H) N(d+1 N)=o < N >
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Out-Sample
o We study a simplified case: The out-samples are (x1,y1),..., (Xn,yy)-
@ Assume y' = Xw* + €.
(] Eout is
. 1. 1
Eout(w) = NHy _y/H2 = NHHE - €/H2'

o Ep[Eput(i)] is
EplE (W)] = 1B [T HT He + €]
= % {ED [ETHTHE] +Ep [e'e’T}}

{U +02N}—0 <1+dl—'v_1>.
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