ECE595 / STAT598: Machine Learning I Lecture 28 Sample and Model Complexity

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

• Lecture 28 Sample and Model Complexity

- Lecture 29 Bias and Variance
- Lecture 30 Overfit

Today's Lecture:

- Generalization Bound using VC Dimension
 - Review of growth function and VC dimension
 - Generalization bound
- Sample and Model Complexity
 - Sample complexity
 - Model complexity
 - Trade off

VC Dimension

Definition (VC Dimension)

The Vapnik-Chervonenkis dimension of a hypothesis set \mathcal{H} , denoted by $d_{\rm VC}$, is the largest value of N for which \mathcal{H} can shatter all N training samples.

- \bullet You give me a hypothesis set $\mathcal H,$ e.g., linear model
- You tell me the number of training samples N
- Start with a small N
- I will be able to shatter for a while, until I hit a bump
- E.g., linear in 2D: N = 3 is okay, but N = 4 is not okay
- So I find the largest N such that \mathcal{H} can shatter N training samples
- E.g., linear in 2D: $d_{\rm VC} = 3$
- $\bullet\,$ If ${\cal H}$ is complex, then expect large ${\it d}_{\rm VC}$
- Does not depend on $p(\mathbf{x})$, \mathcal{A} and f

Linking the Growth Function

Theorem (Sauer's Lemma)

Let $d_{\rm VC}$ be the VC dimension of a hypothesis set ${\cal H},$ then

$$m_{\mathcal{H}}(N) \leq \sum_{i=0}^{d_{\mathrm{VC}}} \binom{N}{i}.$$

- I skip the proof here. See AML Chapter 2.2 for proof.
- What is more interesting is this:

$$\sum_{i=0}^{d_{\rm VC}} \binom{N}{i} \leq N^{d_{\rm VC}} + 1.$$

This can be proved by simple induction. Exercise.

• So together we have

$$m_{\mathcal{H}}(N) \leq N^{d_{\mathrm{VC}}} + 1.$$

(1

Difference between VC and Hoeffding

© Stanley Chan 2020. All Rights Reserved

Generalization Bound Again

• Recall the generalization bound

$$\mathcal{E}_{ ext{in}}(g) - \sqrt{rac{1}{2N}\lograc{2M}{\delta}} \leq \mathcal{E}_{ ext{out}}(g) \leq \mathcal{E}_{ ext{in}}(g) + \sqrt{rac{1}{2N}\lograc{2M}{\delta}}.$$

• Substitute M by $m_{\mathcal{H}}(N)$, and then $m_{\mathcal{H}}(N) \leq N^{d_{\mathrm{VC}}} + 1$:

$$E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + \sqrt{rac{1}{2N}\lograc{2(N^{d_{ ext{VC}}}+1)}{\delta}}.$$

- Wonderful!
- \bullet Everything is characterized by $\delta,~N$ and $d_{\rm VC}$
- $\bullet~d_{\rm VC}$ tells us the expressiveness of the model
- $\bullet\,$ You can also think of $d_{\rm VC}$ as the effective number of parameters

Generalization Bound Again

- If $d_{
 m VC} < \infty$,
- Then as $N o \infty$,

$$\epsilon = \sqrt{rac{1}{2N}\lograc{2(N^{d_{
m VC}}+1)}{\delta}}
ightarrow 0.$$

- If this is the case, then the final hypothesis $g \in \mathcal{H}$ will generalize.
- $d_{
 m VC}=\infty$,
- $\bullet\,$ Then ${\cal H} is$ as diverse as it can be
- It is not possible to generalize
- Message 1: If you choose a complex model, then you need to pay the price of training sample
- Message 2: If you choose an extremely complex model, then it may not be able to generalize regardless the number of samples

Generalizing the Generalization Bound

Theorem (Generalization Bound)

For any tolerance $\delta > 0$

$$\mathsf{E}_{ ext{out}}(g) \leq \mathsf{E}_{ ext{in}}(g) + \sqrt{rac{\mathbf{8}}{N}\lograc{\mathbf{4}m_{\mathcal{H}}(\mathbf{2N})}{\delta}},$$

with probability at least $1 - \delta$.

- Some small subtle technical requirements. See AML chapter 2.2
- How tight is this generalization bound? Not too tight.
- ullet The Hoeffding inequality has a slack. The inequality is too general for all values of $E_{\rm out}$
- The growth function $m_{\mathcal{H}}(N)$ gives the **worst case** scenario
- Bounding $m_{\mathcal{H}}(N)$ by a polynomial introduces slack

Outline

• Lecture 28 Sample and Model Complexity

- Lecture 29 Bias and Variance
- Lecture 30 Overfit

Today's Lecture:

- Generalization Bound using VC Dimension
 - Review of growth function and VC dimension
 - Generalization bound
- Sample and Model Complexity
 - Sample complexity
 - Model complexity
 - Trade off

Sample and Model Complexity

Sample Complexity

- What is the smallest number of samples required?
- Required to ensure training and testing error are close
- Close = within certain ϵ , with confidence $1-\delta$
- Regardless of what learning algorithm you use

Model Complexity

- What is the largest model you can use?
- Refers to the hypothesis set
- With respect to the number of training samples
- $\bullet~\mathsf{Largest} = \mathsf{measured}$ in terms of VC dimension
- Can use = within certain ϵ , with confidence $1-\delta$
- Regardless of what learning algorithm you use

Sample Complexity

• The generalization bound is

$$E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + \sqrt{rac{8}{N}\lograc{4m_{\mathcal{H}}(2N)}{\delta}}.$$

 $\bullet\,$ If you want the generalization error to be at most $\epsilon,$ then

$$\sqrt{\frac{8}{N}\log\frac{4m_{\mathcal{H}}(2N)}{\delta}} \leq \epsilon.$$

• Rearrange terms and use VC dimension,

$$N \geq rac{8}{\epsilon^2} \log\left(rac{4(2N)^{d_{
m VC}}+1}{\delta}
ight)$$

• Example. $d_{\rm VC} = 3.\ \epsilon = 0.1.\ \delta = 0.1$ (90% confidence). Then the number of samples we need is

$$N \ge rac{8}{0.1^2} \log \left(rac{4(2N)^3 + 4}{0.1}
ight)$$

C Stanley Chan 2020. All Rights Reserved

Sample Complexity

• How to solve for *N* in this equation?

$$N \ge rac{8}{0.1^2} \log \left(rac{4(2N)^3 + 4}{0.1}
ight).$$

• Put N = 1000 to the right hand side

$$N \geq rac{8}{0.1^2} \log \left(rac{4(2 imes 1000)^3 + 4}{0.1}
ight) pprox 21,193.$$

- Not enough. So put N = 21,193 to the right hand side. Iterate.
- Then we get $N \approx 30,000$.
- So we need at least 30,000 samples.
- However, generalization bound is not tight. So our estimate is over-estimate.
- Rule of thumb, 10 \times $d_{\rm VC}.$

Error Bar

۲

• The generalization bound is

$$egin{split} \mathcal{E}_{ ext{out}}(g) \leq \mathcal{E}_{ ext{in}}(g) + \sqrt{rac{8}{N}\log\left(rac{4\left((2N)^{d_{ ext{VC}}}+1
ight)}{\delta}
ight)}. \end{split}$$

- What error bar can we offer?
- Example. N = 100. δ = 0.1 (90% confidence). $d_{\rm VC}$ = 1.

$$E_{
m out}(g) \leq E_{
m in}(g) + \sqrt{rac{8}{100} \log \left(rac{4 \left((2 imes 100) + 1
ight)}{0.1}
ight)} pprox E_{
m in}(g) + 0.848.$$

- Close to useless.
- If we use N = 1000, then

$$E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + 0.301.$$

• Somewhat more respectable estimate.

Model Complexity

• The generalization bound is

$$\mathcal{E}_{ ext{out}}(g) \leq \mathcal{E}_{ ext{in}}(g) + \underbrace{\sqrt{rac{8}{N}\lograc{4\left((2N)^{d_{ ext{VC}}}+1
ight)}{\delta}}}_{=\epsilon(N,\mathcal{H},\delta)}$$

- $\epsilon(N, \mathcal{H}, \delta)$ = penalty of the model complexity
- If d_{VC} is large, then $\epsilon(N,\mathcal{H},\delta)$ is big
- So the generalization error is large
- There is a trade-off curve

Trade-off Curve

Stanley Chan 2020. All Rights Reserved. 15 / 17

Generalization Bound for Testing

- Testing Set: $\mathcal{D}_{test} = \{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_L \}.$
- The final hypothesis g is already determined. So no need to use Union bound.
- The Hoeffding is as simple as

$$\mathbb{P}\Big\{\left|\mathcal{E}_{\mathrm{in}}(g)-\mathcal{E}_{\mathrm{out}}(g)
ight|>\epsilon\Big\}\leq 2e^{-2\epsilon^{2}oldsymbol{L}},$$

• The generalization bound is

$$E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + \sqrt{rac{1}{2L} \log rac{2}{\delta}}.$$

- If you have a lot of testing samples, then $E_{\mathrm{in}}(g)$ will be good estimate of $E_{\mathrm{out}}(g)$
- Independent of model complexity
- \bullet Only δ and L

Reading List

- Yasar Abu-Mostafa, Learning from Data, chapter 2.1
- Mehrya Mohri, Foundations of Machine Learning, Chapter 3.2
- Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf