ECE595 / STAT598: Machine Learning I Lecture 27 VC Dimension

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

Purdue
 UNIVERSITY

Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- From Dichotomy to Shattering
- Review of dichotomy
- The Concept of Shattering
- VC Dimension
- Example of VC Dimension
- Rectangle Classifier
- Perceptron Algorithm
- Two Cases

Probably Approximately Correct

- Probably: Quantify error using probability:

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \leq \epsilon\right] \geq 1-\delta
$$

- Approximately Correct: In-sample error is an approximation of the out-sample error:

$$
\mathbb{P}\left[\left|E_{\text {in }}(h)-E_{\text {out }}(h)\right| \leq \epsilon\right] \geq 1-\delta
$$

- If you can find an algorithm \mathcal{A} such that for any ϵ and δ, there exists an N which can make the above inequality holds, then we say that the target function is PAC-learnable.

Overcoming the M Factor

- The \mathcal{B} ad events \mathcal{B}_{m} are

$$
\mathcal{B}_{m}=\left\{\left|E_{\text {in }}\left(h_{m}\right)-E_{\text {out }}\left(h_{m}\right)\right|>\epsilon\right\}
$$

- The factor M is here because of the Union bound:

$$
\mathbb{P}\left[\mathcal{B}_{1} \text { or } \ldots \text { or } \mathcal{B}_{M}\right] \leq \mathbb{P}\left[\mathcal{B}_{1}\right]+\ldots+\mathbb{P}\left[\mathcal{B}_{M}\right]
$$

Dichotomy

Definition

Let $x_{1}, \ldots, x_{N} \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are

$$
\mathcal{H}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)=\left\{\left(h\left(\boldsymbol{x}_{1}\right), \ldots, h\left(\boldsymbol{x}_{N}\right)\right) \mid h \in \mathcal{H}\right\} .
$$

Dichotomy

Definition

Let $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathcal{X}$. The dichotomies generated by \mathcal{H} on these points are

$$
\mathcal{H}\left(x_{1}, \ldots, x_{N}\right)=\left\{\left(h\left(x_{1}\right), \ldots, h\left(x_{N}\right)\right) \mid h \in \mathcal{H}\right\} .
$$

Candidate to Replace M

- So here is our candidate replacement for M.
- Define Growth Function

$$
m_{\mathcal{H}}(N)=\max _{x_{1}, \ldots, x_{N} \in \mathcal{X}}\left|\mathcal{H}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)\right|
$$

- You give me a hypothesis set \mathcal{H}
- You tell me there are N training samples
- My job: Do whatever I can, by allocating x_{1}, \ldots, x_{N}, so that the number of dichotomies is maximized
- Maximum number of dichotomy $=$ the best I can do with your \mathcal{H}
- $m_{\mathcal{H}}(N)$: How expressive your hypothesis set \mathcal{H} is
- Large $m_{\mathcal{H}}(N)=$ more expressive $\mathcal{H}=$ more complicated \mathcal{H}
- $m_{\mathcal{H}}(N)$ only depends on \mathcal{H} and N
- Doesn't depend on the learning algorithm \mathcal{A}
- Doesn't depend on the distribution $p(\boldsymbol{x})$ (because I'm giving you the max.)

Summary of the Examples

- \mathcal{H} is positive ray:

$$
m_{\mathcal{H}}(N)=N+1
$$

- \mathcal{H} is positive interval:

$$
m_{\mathcal{H}}(N)=\binom{N+1}{2}+1=\frac{N^{2}}{2}+\frac{N}{2}+1
$$

- \mathcal{H} is convex set:

$$
m_{\mathcal{H}}(N)=2^{N}
$$

- So if we can replace M by $m_{\mathcal{H}}(N)$
- And if $m_{\mathcal{H}}(N)$ is a polynomial
- Then we are good.

Shatter

Definition

If a hypothesis set \mathcal{H} is able to generate all 2^{N} dichotomies, then we say that \mathcal{H} shatter x_{1}, \ldots, x_{N}.

- $\mathcal{H}=$ hyperplane returned by a perceptron algorithm in 2D.
- If $N=3$, then \mathcal{H} can shatter
- Because we can achieve $2^{3}=8$ dichotomies
- If $N=4$, then \mathcal{H} cannot shatter
- Because we can only achieve 14 dichotomies

VC Dimension

Definition (VC Dimension)

The Vapnik-Chervonenkis dimension of a hypothesis set \mathcal{H}, denoted by d_{VC}, is the largest value of N for which \mathcal{H} can shatter all N training samples.

- You give me a hypothesis set \mathcal{H}, e.g., linear model
- You tell me the number of training samples N
- Start with a small N
- I will be able to shatter for a while, until I hit a bump
- E.g., linear in 2D: $N=3$ is okay, but $N=4$ is not okay
- So I find the largest N such that \mathcal{H} can shatter N training samples
- E.g., linear in 2D: $d_{\mathrm{VC}}=3$
- If \mathcal{H} is complex, then expect large d_{VC}
- Does not depend on $p(\boldsymbol{x}), \mathcal{A}$ and f

Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- From Dichotomy to Shattering
- Review of dichotomy
- The Concept of Shattering
- VC Dimension
- Example of VC Dimension
- Rectangle Classifier
- Perceptron Algorithm
- Two Cases

Example: Rectangle

What is the VC Dimension of a 2D classifier with a rectangle shape?

- You can try putting 4 data points in whatever way.
- There will be 16 possible configurations.
- You can show that the rectangle classifier can shatter all these 16 points
- If you do 5 data points, then not possible. (Put one negative in the interior, and four positive at the boundary.)
- So VC dimension is 4.

VC Dimension of a Perceptron

Theorem (VC Dimension of a Perceptron)
Consider the input space $\mathcal{X}=\mathbb{R}^{d} \cup\{1\}$, i.e., $\left(x=\left[1, x_{1}, \ldots, x_{d}\right]^{T}\right)$. The VC dimension of a perceptron is

$$
d_{\mathrm{VC}}=d+1
$$

- The " +1 " comes from the bias term (w_{0} if you recall)
- So a linear classifier is "no more complicated" than $d+1$
- The best it can shatter is $d+1$ in a d-dimensional space
- E.g., If $d=2$, then $d_{\mathrm{VC}}=3$
- We claim $d_{\mathrm{VC}} \geq d+1$ and $d_{\mathrm{VC}} \leq d+1$
- $d_{\mathrm{VC}} \geq d+1$:

$$
\mathcal{H} \text { can shatter at least } d+1 \text { points }
$$

- It may shatter more, or it may not shatter more. We don't know by just looking at this statement
- $d_{\mathrm{VC}} \leq d+1$:
\mathcal{H} cannot shatter more than $d+1$ points
- So with $d_{\mathrm{VC}} \geq d+1$, we show that $d_{\mathrm{VC}}=d+1$

$d_{\mathrm{VC}} \geq d+1$

- Goal: Show that there is at least one configuration of $d+1$ points that can be shattered by \mathcal{H}
- Think about the 2D case: Put the three points anywhere not on the same line
- Choose

$$
x_{n}=[1,0, \ldots, 1, \ldots, 0]^{T}
$$

- Linear classifier: $\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{n}\right)=y_{n}$.
- For all $d+1$ data points, we have

$$
\operatorname{sign}\left(\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 0 & 1 & & 0 \\
& & & \ddots & 0 \\
1 & 0 & \ldots & 0 & 1
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]\right)=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d+1}
\end{array}\right]=\left[\begin{array}{c}
\pm 1 \\
\pm 1 \\
\vdots \\
\pm 1
\end{array}\right]
$$

$d_{\mathrm{VC}} \geq d+1$

- We can remove the sign because we are trying to find one configuration of points that can be shattered.

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
1 & 1 & 0 & \ldots & 0 \\
1 & 0 & 1 & & 0 \\
& & & \ddots & 0 \\
1 & 0 & \ldots & 0 & 1
\end{array}\right]\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d+1}
\end{array}\right]=\left[\begin{array}{c}
\pm 1 \\
\pm 1 \\
\vdots \\
\pm 1
\end{array}\right]
$$

- We are only interested in whether the problem solvable
- So we just need to see if we can ever find a \boldsymbol{w} that shatters
- If there exists at least one \boldsymbol{w} that makes all ± 1 correct, then \mathcal{H} can shatter (if you use that particular w)
- So is this $(d+1) \times(d+1)$ system invertible?
- Yes. It is. So \mathcal{H} can shatter at least $d+1$ points

$d_{\mathrm{VC}} \leq d+1$

- Can we shatter more than $d+1$ points?
- No.
- You only have $d+1$ variables
- If you have $d+2$ equations, then one equation will be either redundant or contradictory
- If redundant, you can ignore it because it is not the worst case
- If contradictory, then you cannot solve the system of linear equation
- So we cannot shatter more than $d+1$ points
- You can always construct a nasty $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d+1}$ to cause contradiction

$d_{\mathrm{VC}} \leq d+1$

- You give me $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{d+1}, \boldsymbol{x}_{d+2}$
- I can always write \boldsymbol{x}_{d+2} as

$$
\boldsymbol{x}_{d+2}=\sum_{i=1}^{d+1} a_{i} \boldsymbol{x}_{i}
$$

- Not all a_{i} 's are zero. Otherwise it will be trivial.
- My job: Construct a dichotomy which cannot be shattered by any h.
- Here is a dichotomy.
- x_{1}, \ldots, x_{d+1} get $y_{i}=\operatorname{sign}\left(a_{i}\right)$.
- x_{d+2} gets $y_{d+2}=-1$.

$d_{\mathrm{VC}} \leq d+1$

- Then

$$
\mathbf{w}^{T} \boldsymbol{x}_{d+2}=\sum_{i=1}^{d+1} a_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}
$$

- Perceptron: $y_{i}=\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{i}\right)$.
- By our design, $y_{i}=\operatorname{sign}\left(a_{i}\right)$.
- So $a_{i} \boldsymbol{w}^{T} \boldsymbol{x}_{i}>0$
- This forces

$$
\sum_{i=1}^{d+1} a_{i} w^{T} \boldsymbol{x}_{i}>0
$$

- So $y_{d+2}=\operatorname{sign}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{d+2}\right)=+1$, contradiction.
- So we found a dichotomy which cannot be shattered by any h.

Summary of the Examples

- \mathcal{H} is positive ray: $m_{\mathcal{H}}(N)=N+1$.
- If $N=1$, then $m_{\mathcal{H}}(1)=2$
- If $N=2$, then $m_{\mathcal{H}}(2)=3$
- So $d_{\mathrm{VC}}=1$
- \mathcal{H} is positive interval: $m_{\mathcal{H}}(N)=\frac{N^{2}}{2}+\frac{N}{2}+1$.
- If $N=2$, then $m_{\mathcal{H}}(2)=4$
- If $N=4$, then $m_{\mathcal{H}}(4)=5$
- So $d_{\mathrm{VC}}=2$
- \mathcal{H} is perceptron in d-dimensional space
- Just showed
- $d_{\mathrm{VC}}=d+1$
- \mathcal{H} is convex set: $m_{\mathcal{H}}(N)=2^{N}$
- No matter which N we choose, we always have $m_{\mathcal{H}}(N)=2^{N}$
- So $d_{\mathrm{VC}}=\infty$
- The model is as complex as it can be

Reading List

- Yasar Abu-Mostafa, Learning from Data, chapter 2.1
- Mehrya Mohri, Foundations of Machine Learning, Chapter 3.2
- Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf

Appendix

Radon Theorem

The perceptron example we showed in this lecture can be proved using Radon's theorem.

Theorem (Radon's Theorem)

Any set \mathcal{X} of $d+2$ data points in \mathbb{R}^{d} can be partitioned into two subsets \mathcal{X}_{1} and \mathcal{X}_{2} such that the convex hulls of \mathcal{X}_{1} and \mathcal{X}_{2} intersect.

Proof: See Mehryar Mohri, Foundations of Machine Learning, Theorem 3.13.

- If two sets are separated by a hyperplane, then their convex hulls are separated.
- So if you have $d+2$ points, Radon says the convex hulls intersect.
- So you cannot shatter the $d+2$ points.
- $d+1$ is okay as we have proved. So the VC dimension is $d+1$.

