ECE595 / STAT598: Machine Learning I Lecture 27 VC Dimension

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- From Dichotomy to Shattering
 - Review of dichotomy
 - The Concept of Shattering
 - VC Dimension
- Example of VC Dimension
 - Rectangle Classifier
 - Perceptron Algorithm
 - Two Cases

Probably Approximately Correct

• **Probably**: Quantify error using probability:

 $\mathbb{P}ig[|E_{ ext{in}}(h) - E_{ ext{out}}(h)| \leq \epsilon ig] \geq 1 - \delta$

• Approximately Correct: In-sample error is an approximation of the out-sample error:

 $\mathbb{P}\left[|E_{ ext{in}}(h) - E_{ ext{out}}(h)| \leq \epsilon
ight] \geq 1 - \delta$

• If you can find an algorithm A such that for any ϵ and δ , there exists an N which can make the above inequality holds, then we say that the target function is **PAC-learnable**.

Overcoming the M Factor

• The \mathcal{B} ad events \mathcal{B}_m are

$$\mathcal{B}_m = \{|E_{\mathrm{in}}(h_m) - E_{\mathrm{out}}(h_m)| > \epsilon\}$$

• The factor *M* is here because of the Union bound:

 $\mathbb{P}[\mathcal{B}_1 \text{ or } \dots \text{ or } \mathcal{B}_M] \leq \mathbb{P}[\mathcal{B}_1] + \dots + \mathbb{P}[\mathcal{B}_M].$

© Stanley Chan 2020. All Rights Reserved

Dichotomy

Definition

Let $x_1, \ldots, x_N \in \mathcal{X}$. The **dichotomies** generated by \mathcal{H} on these points are

$$\mathcal{H}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N) = \{(h(\boldsymbol{x}_1),\ldots,h(\boldsymbol{x}_N)) \mid h \in \mathcal{H}\}.$$

C Stanley Chan 2020. All Rights Reserved

Dichotomy

Definition

Let $x_1, \ldots, x_N \in \mathcal{X}$. The **dichotomies** generated by \mathcal{H} on these points are

$$\mathcal{H}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N) = \{(h(\boldsymbol{x}_1),\ldots,h(\boldsymbol{x}_N)) \mid h \in \mathcal{H}\}.$$

C Stanley Chan 2020. All Rights Reserved

Candidate to Replace M

- So here is our candidate replacement for M.
- Define **Growth Function**

$$m_{\mathcal{H}}(N) = \max_{\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N \in \mathcal{X}} |\mathcal{H}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N)|$$

- \bullet You give me a hypothesis set ${\cal H}$
- You tell me there are N training samples
- My job: Do whatever I can, by allocating x_1, \ldots, x_N , so that the number of dichotomies is maximized
- $\bullet\,$ Maximum number of dichotomy = the best I can do with your ${\cal H}$
- $m_{\mathcal{H}}(N)$: How expressive your hypothesis set \mathcal{H} is
- Large $m_{\mathcal{H}}(N)$ = more expressive \mathcal{H} = more complicated \mathcal{H}
- $m_{\mathcal{H}}(N)$ only depends on $\mathcal H$ and N
- \bullet Doesn't depend on the learning algorithm ${\cal A}$
- Doesn't depend on the distribution $p(\mathbf{x})$ (because I'm giving you the max.)

Summary of the Examples

 $\bullet \ \mathcal{H}$ is positive ray:

$$m_{\mathcal{H}}(N) = N+1$$

 $\bullet \ \mathcal{H}$ is positive interval:

$$m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{N^2}{2} + \frac{N}{2} + 1$$

• \mathcal{H} is convex set:

$$m_{\mathcal{H}}(N) = 2^{\Lambda}$$

- So if we can replace M by $m_{\mathcal{H}}(N)$
- And if $m_{\mathcal{H}}(N)$ is a polynomial
- Then we are good.

Definition

If a hypothesis set \mathcal{H} is able to generate all 2^N dichotomies, then we say that \mathcal{H} shatter x_1, \ldots, x_N .

- $\mathcal{H} =$ hyperplane returned by a perceptron algorithm in 2D.
- If N=3, then ${\mathcal H}$ can shatter
- Because we can achieve $2^3 = 8$ dichotomies
- If N = 4, then \mathcal{H} cannot shatter
- Because we can only achieve 14 dichotomies

VC Dimension

Definition (VC Dimension)

The Vapnik-Chervonenkis dimension of a hypothesis set \mathcal{H} , denoted by d_{VC} , is the largest value of N for which \mathcal{H} can shatter all N training samples.

- \bullet You give me a hypothesis set $\mathcal H,$ e.g., linear model
- You tell me the number of training samples N
- Start with a small N
- I will be able to shatter for a while, until I hit a bump
- E.g., linear in 2D: N = 3 is okay, but N = 4 is not okay
- So I find the largest N such that \mathcal{H} can shatter N training samples
- E.g., linear in 2D: $d_{\rm VC} = 3$
- $\bullet\,$ If ${\cal H}$ is complex, then expect large ${\it d}_{\rm VC}$
- Does not depend on $p(\mathbf{x})$, \mathcal{A} and f

Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- From Dichotomy to Shattering
 - Review of dichotomy
 - The Concept of Shattering
 - VC Dimension
- Example of VC Dimension
 - Rectangle Classifier
 - Perceptron Algorithm
 - Two Cases

Example: Rectangle

What is the VC Dimension of a 2D classifier with a rectangle shape?

- You can try putting 4 data points in whatever way.
- There will be 16 possible configurations.
- You can show that the rectangle classifier can shatter all these 16 points
- If you do 5 data points, then not possible. (Put one negative in the interior, and four positive at the boundary.)
- So VC dimension is 4.

Stanley Chan 2020. All Rights Reserved

VC Dimension of a Perceptron

Theorem (VC Dimension of a Perceptron)

Consider the input space $\mathcal{X} = \mathbb{R}^d \cup \{1\}$, i.e., $(\mathbf{x} = [1, x_1, \dots, x_d]^T)$. The VC dimension of a perceptron is

$$d_{\rm VC} = d + 1.$$

- The "+1" comes from the bias term (w_0 if you recall)
- So a linear classifier is "no more complicated" than d+1
- The best it can shatter is d + 1 in a d-dimensional space
- E.g., If d=2, then $d_{
 m VC}=3$

- ullet We claim $d_{
 m VC} \geq d+1$ and $d_{
 m VC} \leq d+1$
- $d_{\mathrm{VC}} \geq d+1$:

${\mathcal H}$ can shatter at least d+1 points

- It may shatter more, or it may not shatter more. We don't know by just looking at this statement
- $d_{\mathrm{VC}} \leq d+1$:

 \mathcal{H} cannot shatter **more than** d+1 points

• So with $d_{\mathrm{VC}} \geq d+1$, we show that $d_{\mathrm{VC}} = d+1$

$d_{ m VC} \geq d+1$

- Goal: Show that there is at least one configuration of d+1 points that can be shattered by ${\cal H}$
- Think about the 2D case: Put the three points anywhere not on the same line
- Choose

$$\boldsymbol{x}_n = [1, 0, \ldots, 1, \ldots, 0]^T.$$

- Linear classifier: sign $(\boldsymbol{w}^T \boldsymbol{x}_n) = y_n$.
- For all d + 1 data points, we have

$$\operatorname{sign}\left(\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} \right) = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix}$$

© Stanley Chan 2020. All Rights Reserved

$d_{ m VC} \geq d+1$

• We can remove the sign because we are trying to find **one** configuration of points that can be shattered.

$$\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ \dots & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{d+1} \end{bmatrix} = \begin{bmatrix} \pm 1 \\ \pm 1 \\ \vdots \\ \pm 1 \end{bmatrix}$$

- We are only interested in whether the problem solvable
- So we just need to see if we can ever find a \boldsymbol{w} that shatters
- If there exists at least one \boldsymbol{w} that makes all ± 1 correct, then \mathcal{H} can shatter (if you use that particular \boldsymbol{w})
- So is this $(d + 1) \times (d + 1)$ system invertible?
- \bullet Yes. It is. So ${\cal H}$ can shatter at least d+1 points

$d_{ m VC} \leq d+1$

- Can we shatter more than d + 1 points?
- No.
- You only have d + 1 variables
- If you have d + 2 equations, then one equation will be either redundant or contradictory
- If redundant, you can ignore it because it is not the worst case
- If contradictory, then you cannot solve the system of linear equation
- So we cannot shatter more than d + 1 points
- You can always construct a nasty x_1, \ldots, x_{d+1} to cause contradiction

$d_{ m VC} \leq d+1$

- You give me $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_{d+1}, \boldsymbol{x}_{d+2}$
- I can always write \boldsymbol{x}_{d+2} as

$$oldsymbol{x}_{d+2} = \sum_{i=1}^{d+1} oldsymbol{a}_i oldsymbol{x}_i$$

- Not all a_i 's are zero. Otherwise it will be trivial.
- My job: Construct a dichotomy which cannot be shattered by any h.
- Here is a dichotomy.
- $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_{d+1}$ get $y_i = \operatorname{sign}(a_i)$.
- x_{d+2} gets $y_{d+2} = -1$.

 $d_{
m VC} \leq d+1$

• Then

$$\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}_{d+2} = \sum_{i=1}^{d+1} a_i \boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}_i.$$

- Perceptron: $y_i = \operatorname{sign}(\boldsymbol{w}^T \boldsymbol{x}_i)$.
- By our design, $y_i = \operatorname{sign}(a_i)$.
- So $a_i \boldsymbol{w}^T \boldsymbol{x}_i > 0$
- This forces

$$\sum_{i=1}^{d+1} a_i \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_i > 0.$$

- So $y_{d+2} = \operatorname{sign}(\boldsymbol{w}^T \boldsymbol{x}_{d+2}) = +1$, contradiction.
- So we found a dichotomy which cannot be shattered by any *h*.

Summary of the Examples

•
$$\mathcal{H}$$
 is positive ray: $m_{\mathcal{H}}(N) = N + 1$.

- If N = 1, then $m_{\mathcal{H}}(1) = 2$
- If N = 2, then $m_{\mathcal{H}}(2) = 3$
- So $d_{
 m VC}=1$
- \mathcal{H} is positive interval: $m_{\mathcal{H}}(N) = \frac{N^2}{2} + \frac{N}{2} + 1$.
 - If N=2, then $m_{\mathcal{H}}(2)=4$
 - If N = 4, then $m_{\mathcal{H}}(4) = 5$

• So
$$d_{
m VC}=2$$

- \mathcal{H} is perceptron in *d*-dimensional space
 - Just showed
 - $d_{\rm VC} = d + 1$
- \mathcal{H} is convex set: $m_{\mathcal{H}}(N) = 2^N$
 - No matter which N we choose, we always have $m_{\mathcal{H}}(N)=2^N$
 - So $d_{\mathrm{VC}}=\infty$
 - The model is as complex as it can be

Reading List

- Yasar Abu-Mostafa, Learning from Data, chapter 2.1
- Mehrya Mohri, Foundations of Machine Learning, Chapter 3.2
- Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf

Appendix

C Stanley Chan 2020. All Rights Reserved.

Radon Theorem

The perceptron example we showed in this lecture can be proved using Radon's theorem.

Theorem (Radon's Theorem)

Any set \mathcal{X} of d + 2 data points in \mathbb{R}^d can be partitioned into two subsets \mathcal{X}_1 and \mathcal{X}_2 such that the convex hulls of \mathcal{X}_1 and \mathcal{X}_2 intersect.

Proof: See Mehryar Mohri, Foundations of Machine Learning, Theorem 3.13.

- If two sets are separated by a hyperplane, then their convex hulls are separated.
- So if you have d + 2 points, Radon says the convex hulls intersect.
- So you cannot shatter the d + 2 points.
- d + 1 is okay as we have proved. So the VC dimension is d + 1.