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Probably Approximately Correct

Probably: Quantify error using probability:

P
[
|Ein(h)− Eout(h)| ≤ ε

]
≥ 1− δ

Approximately Correct: In-sample error is an approximation of the out-sample error:

P [|Ein(h)− Eout(h)| ≤ ε] ≥ 1− δ

If you can find an algorithm A such that for any ε and δ, there exists an N which can
make the above inequality holds, then we say that the target function is PAC-learnable.

3 / 23



c©Stanley Chan 2020. All Rights Reserved.

Overcoming the M Factor

The Bad events Bm are

Bm = {|Ein(hm)− Eout(hm)| > ε}

The factor M is here because of the Union bound:

P[B1 or . . . or BM ] ≤ P[B1] + . . .+ P[BM ].
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Dichotomy

Definition

Let x1, . . . , xN ∈ X . The dichotomies generated by H on these points are

H(x1, . . . , xN) = {(h(x1), . . . , h(xN)) | h ∈ H} .
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Candidate to Replace M

So here is our candidate replacement for M.

Define Growth Function

mH(N) = max
x1,...,xN∈X

|H(x1, . . . , xN)|

You give me a hypothesis set H
You tell me there are N training samples

My job: Do whatever I can, by allocating x1, . . . , xN , so that the number of dichotomies
is maximized

Maximum number of dichotomy = the best I can do with your H
mH(N): How expressive your hypothesis set H is

Large mH(N) = more expressive H = more complicated H
mH(N) only depends on H and N

Doesn’t depend on the learning algorithm A
Doesn’t depend on the distribution p(x) (because I’m giving you the max.)
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Summary of the Examples

H is positive ray:
mH(N) = N + 1

H is positive interval:

mH(N) =

(
N + 1

2

)
+ 1 =

N2

2
+

N

2
+ 1

H is convex set:
mH(N) = 2N

So if we can replace M by mH(N)

And if mH(N) is a polynomial

Then we are good.
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Shatter

Definition

If a hypothesis set H is able to generate all 2N dichotomies, then we say that H shatter
x1, . . . , xN .

H = hyperplane returned by a perceptron algorithm in 2D.

If N = 3, then H can shatter

Because we can achieve 23 = 8 dichotomies

If N = 4, then H cannot shatter

Because we can only achieve 14 dichotomies
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VC Dimension

Definition (VC Dimension)

The Vapnik-Chervonenkis dimension of a hypothesis set H, denoted by dVC, is the largest
value of N for which H can shatter all N training samples.

You give me a hypothesis set H, e.g., linear model

You tell me the number of training samples N

Start with a small N

I will be able to shatter for a while, until I hit a bump

E.g., linear in 2D: N = 3 is okay, but N = 4 is not okay

So I find the largest N such that H can shatter N training samples

E.g., linear in 2D: dVC = 3

If H is complex, then expect large dVC

Does not depend on p(x), A and f
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Example: Rectangle

What is the VC Dimension of a 2D classifier with a rectangle shape?

You can try putting 4 data points in whatever way.

There will be 16 possible configurations.

You can show that the rectangle classifier can shatter all these 16 points

If you do 5 data points, then not possible. (Put one negative in the interior, and four
positive at the boundary.)

So VC dimension is 4.

12 / 23



c©Stanley Chan 2020. All Rights Reserved.

VC Dimension of a Perceptron

Theorem (VC Dimension of a Perceptron)

Consider the input space X = Rd ∪ {1}, i.e., (x = [1, x1, . . . , xd ]T ). The VC dimension of a
perceptron is

dVC = d + 1.

The “+1” comes from the bias term (w0 if you recall)

So a linear classifier is “no more complicated” than d + 1

The best it can shatter is d + 1 in a d-dimensional space

E.g., If d = 2, then dVC = 3
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Why?

We claim dVC ≥ d + 1 and dVC ≤ d + 1

dVC ≥ d + 1:

H can shatter at least d + 1 points

It may shatter more, or it may not shatter more. We don’t know by just looking at this
statement

dVC ≤ d + 1:

H cannot shatter more than d + 1 points

So with dVC ≥ d + 1, we show that dVC = d + 1
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dVC ≥ d + 1

Goal: Show that there is at least one configuration of d + 1 points that can be shattered
by H
Think about the 2D case: Put the three points anywhere not on the same line

Choose
xn = [1, 0, . . . , 1, . . . , 0]T .

Linear classifier: sign(wTxn) = yn.

For all d + 1 data points, we have

sign




1 0 0 . . . 0
1 1 0 . . . 0
1 0 1 0

. . . 0
1 0 . . . 0 1



w0

w1
...
wd


 =


y1
y2
...

yd+1

 =


±1
±1

...
±1


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dVC ≥ d + 1

We can remove the sign because we are trying to find one configuration of points that
can be shattered. 

1 0 0 . . . 0
1 1 0 . . . 0
1 0 1 0

. . . 0
1 0 . . . 0 1



w0

w1
...
wd

 =


y1
y2
...

yd+1

 =


±1
±1

...
±1


We are only interested in whether the problem solvable

So we just need to see if we can ever find a w that shatters

If there exists at least one w that makes all ±1 correct, then H can shatter (if you use
that particular w)

So is this (d + 1)× (d + 1) system invertible?

Yes. It is. So H can shatter at least d + 1 points
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dVC ≤ d + 1

Can we shatter more than d + 1 points?

No.

You only have d + 1 variables

If you have d + 2 equations, then one equation will be either redundant or contradictory

If redundant, you can ignore it because it is not the worst case

If contradictory, then you cannot solve the system of linear equation

So we cannot shatter more than d + 1 points

You can always construct a nasty x1, . . . , xd+1 to cause contradiction
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dVC ≤ d + 1

You give me x1, . . . , xd+1, xd+2

I can always write xd+2 as

xd+2 =
d+1∑
i=1

aix i

Not all ai ’s are zero. Otherwise it will be trivial.

My job: Construct a dichotomy which cannot be shattered by any h.

Here is a dichotomy.

x1, . . . , xd+1 get yi = sign(ai ).

xd+2 gets yd+2 = −1.
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dVC ≤ d + 1

Then

wTxd+2 =
d+1∑
i=1

aiwTx i .

Perceptron: yi = sign(wTx i ).

By our design, yi = sign(ai ).

So aiwTx i > 0

This forces
d+1∑
i=1

aiwTx i > 0.

So yd+2 = sign(wTxd+2) = +1, contradiction.

So we found a dichotomy which cannot be shattered by any h.
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Summary of the Examples

H is positive ray: mH(N) = N + 1.
If N = 1, then mH(1) = 2
If N = 2, then mH(2) = 3
So dVC = 1

H is positive interval: mH(N) = N2

2 + N
2 + 1.

If N = 2, then mH(2) = 4
If N = 4, then mH(4) = 5
So dVC = 2

H is perceptron in d-dimensional space
Just showed
dVC = d + 1

H is convex set: mH(N) = 2N

No matter which N we choose, we always have mH(N) = 2N

So dVC =∞
The model is as complex as it can be
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Reading List

Yasar Abu-Mostafa, Learning from Data, chapter 2.1

Mehrya Mohri, Foundations of Machine Learning, Chapter 3.2

Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf
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Appendix
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Radon Theorem

The perceptron example we showed in this lecture can be proved using Radon’s theorem.

Theorem (Radon’s Theorem)

Any set X of d + 2 data points in Rd can be partitioned into two subsets X1 and X2 such that
the convex hulls of X1 and X2 intersect.

Proof: See Mehryar Mohri, Foundations of Machine Learning, Theorem 3.13.

If two sets are separated by a hyperplane, then their convex hulls are separated.

So if you have d + 2 points, Radon says the convex hulls intersect.

So you cannot shatter the d + 2 points.

d + 1 is okay as we have proved. So the VC dimension is d + 1.
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