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Probably Approximately Correct

Probably: Quantify error using probability:

P
[
|Ein(h)− Eout(h)| ≤ ε

]
≥ 1− δ

Approximately Correct: In-sample error is an approximation of the out-sample error:

P [|Ein(h)− Eout(h)| ≤ ε] ≥ 1− δ

If you can find an algorithm A such that for any ε and δ, there exists an N which can
make the above inequality holds, then we say that the target function is PAC-learnable.
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Guarantee VS Possibility

Difference between deterministic and probabilistic learning.

Deterministic:

“Can D tell us something certain about f outside D?”

The answer is NO.

Anything outside D has uncertainty. There is no way to deal with this uncertainty.

Probabilistic:

“Can D tell us something possibly about f outside D?”

The answer is YES.

If training and testing have the same distribution p(x), then training can say something
about testing.

Assume all samples are independently drawn from p(x).
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One Hypothesis versus the Final Hypothesis

In this equation
P [|Ein(h)− Eout(h)| > ε] ≤ 2e−2ε2N ,

the hypothesis h is fixed.

This h is chosen before we look at the dataset.

If h is chosen after we look at the dataset, then Hoeffding is invalid.

We have to choose a h from H during the learning process.

The h we choose depends on D.

This h is the final hypothesis g .

When you need to choose g from h1, . . . , hM , you need to repeat Hoeffding M times.
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The Factor “M”

You can show that

|Ein(g)− Eout(g)| > ε =⇒ |Ein(h1)− Eout(h1)| > ε

or |Ein(h2)− Eout(h2)| > ε

. . .

or |Ein(hM)− Eout(hM)| > ε.

To have g , you need to consider h1, . . . , hM

You don’t know which hm to pick; So it is a “OR”

So there is a sequence of “OR”
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The Factor “M”

P
{
|Ein(g)− Eout(g)| > ε

} (a)

≤ P
{
|Ein(h1)− Eout(h1)| > ε

or |Ein(h2)− Eout(h2)| > ε

. . .

or |Ein(hM)− Eout(hM)| > ε
}

(b)

≤
M∑

m=1

P
{
|Ein(hm)− Eout(hm)| > ε

}
We need two identities

(a) If-statement. P[A] ≤ P[B] if A⇒ B

(b) Union Bound. P[A or B] ≤ P[A] + P[B]
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The Factor “M”

Change this equation

P
{
|Ein(h)− Eout(h)| > ε

}
≤ 2e−2ε2N ,

to this equation

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me−2ε2N .

So what? M is a constant.

Bad news: M can be large, or even ∞.

A linear regression has M =∞.

Good news: It is possible to bound M.

We will do it later. Let us look at the interpretation first.
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Learning Goal

The ultimate goal of learning is to make

Eout(g) ≈ 0.

To achieve this we need

Eout(g) ≈x
Hoeffding Inequality

Ein(g) ≈x
Training Error

0

Hoeffding inequality holds when N is large

Training error is small when you train well
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Complex H

Recall Hoeffding inequality

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me−2ε2N .

If H is complex, then M will be large. So the approximation by Hoeffding inequality will
be worsen.

But if H is complex you have more options during training. So training error is improved.

So there is a trade-off:

Eout(g) ≈x
worse if H complex

Ein(g) ≈x
good if H complex

0

You cannot use a very complex model

Simple models generalize better
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Complex f

Recall Hoeffding inequality

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me−2ε2N .

Good news: Hoeffding is not affected by f

So even if f is complex, Hoeffding remains

Bad news: If f is complex, then very hard to train

So training error cannot be small

There is another trade-off:

Eout(g) ≈x
no effect by f

Ein(g) ≈x
worse if f complex

0

You can make H to counteract, but complex H will make Hoeffding worse.
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Rewriting the Hoeffding Inequality

Recall the Hoeffding Inequality

P
{
|Ein(g)− Eout(g)| > ε

}
≤ 2Me−2ε2N .

This is the same as
P
{
|Ein(g)− Eout(g)| ≤ ε

}
> 1− δ.

Equivalently, we can say: with probability 1− δ,

Ein(g)− ε ≤ Eout(g) ≤ Ein(g) + ε.
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What is δ?

Move around the terms, then we have

2Me−2ε2N = δ ⇒ ε =

√
1

2N
log

2M

δ

Plug this result into the previous bound:

Ein(g)− ε ≤ Eout(g) ≤ Ein(g) + ε.

This gives us

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
.

This is called the generalization bound.
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Interpreting the Generalization Bound

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
.

N: Training sample.

More is better.

δ: The probability tolerance level. “Confidence”.

Small δ: You are very conservative. So you need large N to compensate for log 1
δ

M: Model complexity.

Large M: You use a very complicated model. So you need large N to compensate for
logM
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The Two Sides of the Generalization Bound

Upper Limit

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
.

Eout(g) cannot be worse than Ein(g) + ε.

Performance guarantee. Ein(g) + ε is the worst you will have. If you can manage this
worst case then you are good.

Lower Limit

Ein(g)−
√

1

2N
log

2M

δ
≤ Eout(g) ≤ Ein(g) +

√
1

2N
log

2M

δ
.

Eout(g) cannot be better than Ein(g)− ε.
Intrinsic limit of your dataset (which controls N), model complexity (which controls M),
and how much you want (which determines δ)
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Overcoming the M Factor

The Bad events Bm are

Bm = {|Ein(hm)− Eout(hm)| > ε}

The factor M is here because of the Union bound:

P[B1 or . . . or BM ] ≤ P[B1] + . . .+ P[BM ].
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Counting the Overlapping Area

∆Eout = change in the +1 and -1 area
Example below: Change a little bit
∆Ein = change in labels of the training samples
Example below: Change a little bit, too
So we should expect the probabilities

P[|Ein(h1)− Eout(h1)| > ε] ≈ P[|Ein(h2)− Eout(h2)| > ε].
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Looking at the Training Samples Only

Here is a our goal: Find something to replace M.
But M is big because the whole input space is big.
Let us look at the input space.
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Looking at the Training Samples Only

If you move the hypothesis a little, you get a different partition

Literally there are infinitely many hypotheses

This is M
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Looking at the Training Samples Only

Here is a our goal: Find something to replace M
But M is big because the whole input space is big
Can we restrict ourselves to just the training sets?
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Looking at the Training Samples Only

The idea is: Just look at the training samples
Put a mask on your dataset
Don’t care until a training sample flips its sign
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Reading List

Learning from Data, chapter 2

Martin Wainwright, High Dimensional Statistics, Cambridge University Press 2019.
(Chapter 2)

CMU Note https:

//www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture28-pac.pdf

Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf
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