ECE595 / STAT598: Machine Learning I Lecture 25 Generalization Bound

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

- Lecture 25 Generalization
- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- *M* Hypothesis
 - PAC framework
 - Guarantee and Possibility
 - The *M* factor
- Generalization Bound
 - H
 - f
 - Lower and upper limits
- Handling M hypothesis
 - A preview

Probably Approximately Correct

• **Probably**: Quantify error using probability:

 $\mathbb{P}ig[|E_{ ext{in}}(h) - E_{ ext{out}}(h)| \leq \epsilon ig] \geq 1 - \delta$

• Approximately Correct: In-sample error is an approximation of the out-sample error:

 $\mathbb{P}\left[|E_{ ext{in}}(h) - E_{ ext{out}}(h)| \leq \epsilon
ight] \geq 1 - \delta$

• If you can find an algorithm A such that for any ϵ and δ , there exists an N which can make the above inequality holds, then we say that the target function is **PAC-learnable**.

Guarantee VS Possibility

Difference between deterministic and probabilistic learning.

- Deterministic:
- "Can \mathcal{D} tell us something *certain* about f outside \mathcal{D} ?"
- The answer is NO.
- \bullet Anything outside ${\cal D}$ has uncertainty. There is no way to deal with this uncertainty.
- Probabilistic:
- "Can \mathcal{D} tell us something *possibly* about *f* outside \mathcal{D} ?"
- The answer is YES.
- If training and testing have the same distribution p(x), then training can say something about testing.
- Assume all samples are independently drawn from $p(\mathbf{x})$.

One Hypothesis versus the Final Hypothesis

• In this equation

$$\mathbb{P}\left[|\mathcal{E}_{\mathrm{in}}(h) - \mathcal{E}_{\mathrm{out}}(h)| > \epsilon
ight] \le 2e^{-2\epsilon^2 N},$$

the hypothesis *h* is *fixed*.

- This *h* is chosen **before** we look at the dataset.
- If *h* is chosen **after** we look at the dataset, then Hoeffding is invalid.
- We have to choose a h from $\mathcal H$ during the learning process.
- The *h* we choose depends on \mathcal{D} .
- This *h* is the final hypothesis *g*.
- When you need to choose g from h_1, \ldots, h_M , you need to repeat Hoeffding M times.

The Factor "M"

You can show that

- To have g, you need to consider h_1, \ldots, h_M
- You don't know which h_m to pick; So it is a "OR"
- So there is a sequence of "OR"

The Factor "M"

$$\mathbb{P}\Big\{ |E_{\mathrm{in}}(g) - E_{\mathrm{out}}(g)| > \epsilon \Big\} \stackrel{(a)}{\leq} \mathbb{P}\Big\{ |E_{\mathrm{in}}(h_1) - E_{\mathrm{out}}(h_1)| > \epsilon$$

or $|E_{\mathrm{in}}(h_2) - E_{\mathrm{out}}(h_2)| > \epsilon$

- We need two identities
- (a) If-statement. $\mathbb{P}[A] \leq \mathbb{P}[B]$ if $A \Rightarrow B$
- (b) Union Bound. $\mathbb{P}[A \text{ or } B] \leq \mathbb{P}[A] + \mathbb{P}[B]$

© Stanley Chan 2020. All Rights Reserved.

The Factor "M"

• Change this equation

$$\mathbb{P}\Big\{ \left| \mathsf{E}_{\mathrm{in}}(h) - \mathsf{E}_{\mathrm{out}}(h) \right| > \epsilon \Big\} \leq 2e^{-2\epsilon^2 N},$$

• to this equation

$$\mathbb{P}\Big\{\left|\mathcal{E}_{\mathrm{in}}(g)-\mathcal{E}_{\mathrm{out}}(g)
ight|>\epsilon\Big\}\leq 2Me^{-2\epsilon^2N}.$$

- So what? *M* is a constant.
- Bad news: M can be large, or even ∞ .
- A linear regression has $M = \infty$.
- Good news: It is possible to bound M.
- We will do it later. Let us look at the interpretation first.

Outline

• Lecture 25 Generalization

- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- *M* Hypothesis
 - PAC framework
 - Guarantee and Possibility
 - The M factor
- Generalization Bound
 - *H*
 - *f*
 - Lower and upper limits
- Handling M hypothesis
 - A preview

Learning Goal

• The ultimate goal of learning is to make

$$E_{
m out}(g) pprox 0.$$

• To achieve this we need

$$E_{\mathrm{out}}(g) \approx E_{\mathrm{in}}(g) \approx 0$$

 $\uparrow \qquad \uparrow$
Hoeffding Inequality Training Error

- Hoeffding inequality holds when N is large
- Training error is small when you train well

$\mathsf{Complex}\ \mathcal{H}$

• Recall Hoeffding inequality

$$\mathbb{P}\Big\{\left|\mathcal{E}_{\mathrm{in}}(g)-\mathcal{E}_{\mathrm{out}}(g)
ight|>\epsilon\Big\}\leq 2Me^{-2\epsilon^2N}.$$

- If \mathcal{H} is complex, then M will be large. So the approximation by Hoeffding inequality will be worsen.
- $\bullet\,$ But if ${\cal H}$ is complex you have more options during training. So training error is improved.
- So there is a trade-off:

$$E_{ ext{out}}(g) pprox E_{ ext{in}}(g) pprox O \ \uparrow \ ext{worse if } \mathcal{H} ext{ complex good if } \mathcal{H} ext{ complex } 0$$

- You cannot use a very complex model
- Simple models generalize better

Complex f

• Recall Hoeffding inequality

$$\mathbb{P}\Big\{\left|\mathcal{E}_{\mathrm{in}}(g)-\mathcal{E}_{\mathrm{out}}(g)
ight|>\epsilon\Big\}\leq 2Me^{-2\epsilon^2N}.$$

- Good news: Hoeffding is not affected by f
- So even if f is complex, Hoeffding remains
- Bad news: If f is complex, then very hard to train
- So training error cannot be small
- There is another trade-off:

$$egin{array}{ccc} E_{ ext{out}}(g) & pprox & E_{ ext{in}}(g) & pprox & 0 \ & \uparrow & & \uparrow & & \uparrow & & \\ & ext{no effect by } f & ext{ worse if } f ext{ complex} & & \end{pmatrix}$$

 \bullet You can make ${\cal H}$ to counteract, but complex ${\cal H}$ will make Hoeffding worse.

Rewriting the Hoeffding Inequality

• Recall the Hoeffding Inequality

$$\mathbb{P}\Big\{\left|\mathcal{E}_{\mathrm{in}}(g)-\mathcal{E}_{\mathrm{out}}(g)
ight|>\epsilon\Big\}\leq 2Me^{-2\epsilon^2N}.$$

• This is the same as

$$\mathbb{P}\Big\{\left|\mathcal{E}_{ ext{in}}(g)-\mathcal{E}_{ ext{out}}(g)
ight|\leq\epsilon\Big\}>1-\delta.$$

• Equivalently, we can say: with probability $1 - \delta$,

$$E_{ ext{in}}(g) - \epsilon \leq E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + \epsilon.$$

What is δ ?

• Move around the terms, then we have

$$2Me^{-2\epsilon^2N} = \delta \Rightarrow \epsilon = \sqrt{\frac{1}{2N}\log{\frac{2M}{\delta}}}$$

• Plug this result into the previous bound:

$$E_{ ext{in}}(g) - \epsilon \leq E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + \epsilon.$$

• This gives us

$$E_{ ext{in}}(g) - \sqrt{rac{1}{2N}\lograc{2M}{\delta}} \leq E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + \sqrt{rac{1}{2N}\lograc{2M}{\delta}}.$$

• This is called the generalization bound.

Interpreting the Generalization Bound

$$E_{ ext{in}}(g) - \sqrt{rac{1}{2N}\lograc{2M}{\delta}} \leq E_{ ext{out}}(g) \leq E_{ ext{in}}(g) + \sqrt{rac{1}{2N}\lograc{2M}{\delta}}.$$

- N: Training sample.
- More is better.
- δ : The probability tolerance level. "Confidence".
- Small δ : You are very conservative. So you need large N to compensate for log $\frac{1}{\delta}$
- *M*: Model complexity.
- Large M: You use a very complicated model. So you need large N to compensate for $\log M$

The Two Sides of the Generalization Bound

• Upper Limit

$$\mathcal{E}_{ ext{in}}(g) - \sqrt{rac{1}{2N}\lograc{2M}{\delta}} \leq \mathcal{E}_{ ext{out}}(g) \leq \mathcal{E}_{ ext{in}}(g) + \sqrt{rac{1}{2N}\lograc{2M}{\delta}}.$$

- $E_{\text{out}}(g)$ cannot be worse than $E_{\text{in}}(g) + \epsilon$.
- Performance guarantee. $E_{in}(g) + \epsilon$ is the worst you will have. If you can manage this worst case then you are good.
- Lower Limit

$$E_{\mathrm{in}}(g) - \sqrt{rac{1}{2N}\lograc{2M}{\delta}} \leq E_{\mathrm{out}}(g) \leq E_{\mathrm{in}}(g) + \sqrt{rac{1}{2N}\lograc{2M}{\delta}}.$$

- $E_{\text{out}}(g)$ cannot be better than $E_{\text{in}}(g) \epsilon$.
- Intrinsic limit of your dataset (which controls N), model complexity (which controls M), and how much you want (which determines δ)

Outline

• Lecture 25 Generalization

- Lecture 26 Growth Function
- Lecture 27 VC Dimension

Today's Lecture:

- *M* Hypothesis
 - PAC framework
 - Guarantee and Possibility
 - The M factor
- Generalization Bound
 - H
 - f
 - Lower and upper limits
- Handling *M* hypothesis
 - A preview

Overcoming the M Factor

• The \mathcal{B} ad events \mathcal{B}_m are

$$\mathcal{B}_m = \{|\mathcal{E}_{\mathrm{in}}(h_m) - \mathcal{E}_{\mathrm{out}}(h_m)| > \epsilon\}$$

• The factor *M* is here because of the Union bound:

 $\mathbb{P}[\mathcal{B}_1 \text{ or } \dots \text{ or } \mathcal{B}_M] \leq \mathbb{P}[\mathcal{B}_1] + \dots + \mathbb{P}[\mathcal{B}_M].$

© Stanley Chan 2020. All Rights Reserved

Counting the Overlapping Area

- $\Delta E_{\mathrm{out}} =$ change in the +1 and -1 area
- Example below: Change a little bit
- $\Delta E_{
 m in} =$ change in labels of the training samples
- Example below: Change a little bit, too
- So we should expect the probabilities

CStanley Chan 2020. All Rights Reserved

- Here is a our goal: Find something to replace M.
- But M is big because the whole input space is big.
- Let us look at the input space.

- If you move the hypothesis a little, you get a different partition
- Literally there are infinitely many hypotheses
- This is M

- Here is a our goal: Find something to replace M
- But *M* is big because the whole input space is big
- Can we restrict ourselves to just the training sets?

- The idea is: Just look at the training samples
- Put a mask on your dataset
- Don't care until a training sample flips its sign

Reading List

- Learning from Data, chapter 2
- Martin Wainwright, High Dimensional Statistics, Cambridge University Press 2019. (Chapter 2)
- CMU Note https:

//www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture28-pac.pdf

• Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf