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Is Learning Feasible?

Learning can be infeasible.

Recall the example below.

Given the training samples, there is no way you can learn and predict.

You know what you know, and you don’t know what you don’t know.

xn yn g f1 f2 f3 f4
0 0 0 ◦ ◦ ◦ ◦ ◦ ◦
0 0 1 • • • • • •
0 1 0 • • • • • •
0 1 1 ◦ ◦ ◦ ◦ ◦ ◦
1 0 0 • • • • • •
1 0 1 ◦ ◦ ◦ ◦ ◦ ◦
1 1 0 ◦/• ◦ • ◦ •
1 1 1 ◦/• ◦ ◦ • •
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The Power of Probability
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In-Sample Error

Let xn be a training sample

h: Your hypothesis

f : The unknown target function

If h(xn) = f (xn), then say training sample xn is correctly classified.

This will give you the in-sample error

Definition (In-sample Error / Training Error)

Consider a training set D = {x1, . . . , xN}, and a target function f . The in-sample error (or
the training error) of a hypothesis function h ∈ H is the empirical average of {h(xn) 6= f (xn)}:

Ein(h)
def
=

1

N

N∑
n=1

[[h(xn) 6= f (xn)]], (1)

where [[·]] = 1 if the statement inside the bracket is true, and = 0 if the statement is false.
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Out-Sample Error

Let x be a testing sample drawn from p(x)

h: Your hypothesis

f : The unknown target function

If h(x) = f (x), then say testing sample x is correctly classified.

Since x ∼ p(x), you need to compute the probability of error, called the out-sample
error

Definition (Out-sample Error / Testing Error)

Consider an input space X containing elements x drawn from a distribution pX (x), and a
target function f . The out-sample error (or the testing error) of a hypothesis function h ∈ H
is

Eout(h)
def
= P[h(x) 6= f (x)], (2)

where P[·] measures the probability of the statement based on the distribution pX (x).

6 / 28



c©Stanley Chan 2020. All Rights Reserved.

Understanding the Errors

Let us take a closer look at these two error:

Ein(h)
def
=

1

N

N∑
n=1

[[h(xn) 6= f (xn)]],

Eout(h)
def
= P[h(x) 6= f (x)],

Both error are functions of the hypothesis h

h is determined by the learning algorithm A
For every h ∈ H, there is a different Ein(h) and Eout(h)

The training samples xn are drawn from p(x)

The testing samples x are also drawn from p(x)

Therefore, P[·] in Eout(h) is evaluated over x ∼ p(x)
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In-sample VS Out-sample

In-Sample Error

Ein(h) =
1

N

N∑
n=1

[[h(xn) 6= f (xn)]]

Out-Sample Error

Eout(h) = P[h(x) 6= f (x)]

= [[h(xn) 6= f (xn)]]︸ ︷︷ ︸
=1

P
{
h(xn) 6= f (xn)

}
+ [[h(xn) = f (xn)]]︸ ︷︷ ︸

=0

(
1− P

{
h(xn) 6= f (xn)

})
= E

{
[[h(xn) 6= f (xn)]]

}
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The Role of p(x)

Learning is feasible if x ∼ p(x)

p(x) says: Training and testing are related

If training and testing are unrelated, then hopeless – the deterministic example shown
previously

If you draw training and testing samples with different bias, then you will suffer
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A Mathematical Tool

Beside in-sample and out-sample error, we also need a mathematical tool.

Theorem (Hoeffding Inequality)

Let X1, . . . ,XN be random variables with 0 ≤ Xn ≤ 1, then

P [|ν − µ| > ε] ≤ 2e−2ε
2N

We will use Hoeffding inequality to analyze the generalization error

There are many other inequalities that can serve the same purpose

Hoeffding requires 0 ≤ Xn ≤ 1

ν = 1
N

∑N
n=1 Xn is the empirical average

Probability of how close ν compared to µ

ε = tolerance level

N = number of samples
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Applying Hoeffinding Inequality to Our Problem

Xn = [[h(xn) 6= f (xn)]] = one sample training error = either 0 or 1

ν = Eout = 1
N

∑N
n=1 Xn = training error

µ = Ein = testing error
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Applying Hoeffinding Inequality to Our Problem

Therefore, the inequality can be stated as

P [|Ein(h)− Eout(h)| > ε] ≤ 2e−2ε
2N .

N = number of training samples

ε = tolerance level

Hoeffding is applicable because [[h(x) 6= f (x)]] is either 1 or 0.

If you want to be more explicit, then

P
xn∼D

[∣∣∣∣∣ 1

N

N∑
n=1

[[h(xn) 6= f (xn)]]− Eout(h)

∣∣∣∣∣ > ε

]
≤ 2e−2ε

2N .

The probability is evaluated with respect to xn drawn from the dataset D
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Interpreting the Bound

Let us look at the bound again:

P [|Ein(h)− Eout(h)| > ε] ≤ 2e−2ε
2N .

Message 1: You can bound Eout(h) using Ein(h).

Ein(h): You know. Eout(h): You don’t know, but you want to know.

They are close if N is large.

Message 2: The right hand side is independent of h and p(x)

So it is a universal upper bound

Works for any A, any H, any f , and any p(x)
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Accuracy and Confidence

Recall the equation
P
[
|Ein(h)− Eout(h)| > ε

]
≤ 2e−2ε

2N

δ = 2e−2ε
2N . confidence: 1− δ.

ε =
√

1
2N log 2

δ . accuracy: 1− ε.
Then the equation becomes

P
[
|Ein(h)− Eout(h)| > ε

]
≤ δ

which is equivalent to
P
[
|Ein(h)− Eout(h)| ≤ ε

]
> 1− δ
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Probably Approximately Correct

Probably: Quantify error using probability:

P
[
|Ein(h)− Eout(h)| ≤ ε

]
≥ 1− δ

Approximately Correct: In-sample error is an approximation of the out-sample error:

P [|Ein(h)− Eout(h)| ≤ ε] ≥ 1− δ

If you can find an algorithm A such that for any ε and δ, there exists an N which can
make the above inequality holds, then we say that the target function is PAC-learnable.

The following example is taken from Mohri et al. Foundation of Machine Learning,
Example 2.4.
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Example: Rectangle Classifier

Consider a set of 2D data points.

The target function is a rectangle R

Inside R: blue. Outside R: orange. Data is intrinsically separable.

Goal: Pick a hypothesis rectangle R ′ using the available data point

Question: Is this problem PAC learnable?
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What Shall We Do?

This question is very general.

It asks about the nature of the problem.

We want to show that this problem is indeed PAC learnable.

To do so, we need to propose an algorithm A which takes the training data and returns
an R ′, such that for any ε > 0 and δ > 0, there exists an N (which is a function of ε and
δ) with

P[|Ein(R ′)− Eout(R
′)| > ε] ≤ δ.

If we find such algorithm, then the problem is PAC learnable.
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Proposed Algorithm

A: Give me the data point points, find the tightest rectangle that covers the blue circles.
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Intuition

As N grows, we can find a R ′ which is getting closer and closer to R.

So for any ε > 0 and δ > 0, it seems possible that as long as N is large enough we will be
able to make training error close to testing error.

See Appendix for proof.
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Summary

Not all problems are learnable.

Those that are learnable require training and testing samples are correlated.

Then Hoeffding inequality applies

P[|Eout(R
′)− Ein(R ′)| > ε] ≤ δ.

For any accuracy ε and any confidence δ, if you can find an algorithm A such that as long
as N is large enough the above inequality can be proved, then the target function is PAC
learnable.

Next time: Look at the hypothesis set H.
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Reading List

Yasar Abu-Mustafa, Learning from Data, Chapter 1.3, 2.1.

Mehryar Mohri, Foundations of Machine Learning, Chapter 2.1.

Martin Wainwright, High Dimensional Statistics, Cambridge University Press 2019.
(Chapter 2)

CMU Note https:

//www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture28-pac.pdf

Iowa State Note http://web.cs.iastate.edu/~honavar/pac.pdf

Princeton Note https://www.cs.princeton.edu/courses/archive/spring08/

cos511/scribe_notes/0211.pdf

Stanford Note http://cs229.stanford.edu/notes/cs229-notes4.pdf
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Appendix
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How to Prove PAC for the Example?

First, realize that by the construction of the algorithm, Ein(R ′) = 0.

No training error, because A ensures that all blue circles are inside.

So the probability inequality is simplified from

P[|����Ein(R ′)− Eout(R
′)| > ε] ≤ δ.

to (using a different δ):
P[Eout(R

′) > ε] ≤ δ.

So just need to evaluate P[Eout(R
′) > ε].
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Geometric Arguments

Suppose you give me ε > 0. Let us create 4 segments r1, r2, r3, r4.
area(ri ) >

ε
4 .

If R ′ overlaps with all the four segments, then there exists a ring such that the hypothesis
R ′ will fail to predict.
Since sum of areas > ε, it then follows that Eout(R

′) < ε. (For Eout(R
′) > ε, the

hypothesis R ′ cannot overlap with all four segments.)
So to analyze Eout(R

′) > ε, we should consider the case where not all segments are
overlapped.
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Geometric Arguments

P[Eout(R
′) > ε] = Probability that at least one segment does not intersect with R ′

This could mean r1 or r2 or r3 or r4.
So

P[Eout(R
′) > ε] = P

[
4⋃

i=1

{R ′ ∩ ri = ∅}

]
.
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Bounding Out-sample Error

We can evaluate the probability as follows.

P[Eout(R
′) > ε] ≤ P

[
4⋃

i=1

{R ′ ∩ ri = ∅}

]

≤
4∑

i=1

P
[
{R ′ ∩ ri = ∅}

]
union bound

=
4∑

i=1

P [all xn are outside ri ] because xn are covered by R ′

=
4∑

i=1

(1− ε

4
)N

= 4(1− ε

4
)N ≤ 4e−

Nε
4 . because1− x < e−x .
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PAC Learnable!

Therefore,
P[Eout(R

′) > ε] ≤ 4e−
Nε
4

4e−
Nε
4 ≤ δ if and only if N ≥ 4

ε log 4
δ .

So we have found an algorithm A!

This A ensures that for any ε > 0 and δ > 0, as long as N is larger than 4
ε log 4

δ , then we
can guarantee

P[Eout(R
′) > ε] ≤ δ

If you want the two sided bound, we can show that

P[|Eout(R
′)− Ein(R ′)| > ε] ≤ 2δ.

Therefore, the problem is PAC learnable.
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