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Empirical Average

We want to take a detour to talk about probability inequalities

These inequalities will become useful when studying learning theory

Let us look at 1D case.

You have random variables X1,X2, . . . ,XN .

Assume independently identically distributed i.i.d.

This implies
E[X1] = E[X2] = . . . = E[XN ] = µ

You compute the empirical average

ν =
1

N

N∑
n=1

Xn

How close is ν to µ?
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As N grows ...
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As N grows ...
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Interpreting the Empirical Average

ν =
1

N

N∑
n=1

Xn

ν is a random variable

ν has CDF and PDF

ν has mean

E[ν] = E

[
1

N

N∑
n=1

Xn

]
=

1

N

N∑
n=1

E[Xn]

=
1

N
Nµ = µ.

Note that “E[ν] = µ” is not the same as “ν = µ”.

What is the probability ν deviates from µ?
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Probability of Bad Event

P [|ν − µ| > ε] = ?

B = {|ν − µ| > ε}: The Bad event: ν deviates from µ by at least ε

P[B] = probability that this bad event happens.

Want P[B] small. So upper bound it by δ.

P [|ν − µ| > ε] ≤ δ.

With probability no greater than δ, Bad event happens.

Rearrange the equation:

P [|ν − µ|≤ε] > 1−δ.

With probability at least 1− δ, the Bad event will not happen.
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Markov Inequality

Theorem (Markov Inequality)

For any X > 0 and ε > 0,

P[X ≥ ε] ≤ E[X ]

ε
.

εP[X ≥ ε] = ε

∫ ∞
ε

p(x)dx

=

∫ ∞
ε

ε p(x)dx

≤
∫ ∞
ε

xp(x)dx

≤
∫ ∞
0

xp(x)dx = E[X ].
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Chebyshev Inequality

Theorem (Chebyshev Inequality)

Let X1, . . . ,XN be i.i.d. with E[Xn] = µ and Var[Xn] = σ2. Define

ν =
1

N

N∑
n=1

Xn.

Then,

P [|ν − µ| > ε] ≤ σ2

Nε2

P
[
|ν − µ|2 > ε2

]
≤ E[|ν − µ|2]

ε2︸ ︷︷ ︸
Markov

=
Var[ν]

ε2︸ ︷︷ ︸
E[(ν−µ)2]=var[ν]

=
σ2

Nε2
.︸ ︷︷ ︸

var[ν]=σ2

N
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How Good is Chebyshev Inequality?
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Weak Law of Large Number

Theorem (WLLN)

Let X1, . . . ,XN be a sequence of i.i.d. random variables with common
mean µ. Let MN = 1

N

∑N
n=1 Xn. Then, for any ε > 0,

lim
N→∞

P [|MN − µ| > ε] = 0. (1)

Remark:

The limit is outside the probability.
This means that the probability of the event |MN − µ| > ε is
diminishing as N →.
But diminishing probability can still have occasions where
|MN − µ| > ε.
It just means that these occasions do not happen often.
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Strong Law of Large Number

Theorem (SLLN)

Let X1, . . . ,XN be a sequence of i.i.d. random variables with common
mean µ. Let MN = 1

N

∑N
n=1 Xn. Then, for any ε > 0,

P
[

lim
N→∞

|MN − µ| > ε

]
= 0. (2)

Remark:

The limit is inside the probability.
We need to analyze the limiting object limN→∞ |MN − µ|
This object may or may not exist. This object is another random
variable.
The probability is measuring the event that this limiting object will
deviate significantly from ε
There is no “occasional” outliers.
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Hoeffding Inequality

Let us revisit the Bad event:

P[|ν − µ| ≥ ε] = P[ν − µ ≥ ε or ν − µ ≤ −ε]
≤ P[ν − µ ≥ ε]︸ ︷︷ ︸

≤A

+ P[ν − µ ≤ −ε]︸ ︷︷ ︸
≤A

, Union bound

≤ 2A, (What is A? To be discussed.)

Theorem (Hoeffding Inequality)

Let X1, . . . ,XN be random variables with 0 ≤ Xn ≤ 1, then

P [|ν − µ| > ε] ≤ 2e−2ε
2N︸ ︷︷ ︸

=A
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The e-trick + Markov Inequality

Let us check one side:

P[ν − µ ≥ ε] = P

[
1

N

N∑
n=1

Xn − µ ≥ ε

]
= P

[
N∑

n=1

(Xn − µ) ≥ εN

]
= P

[
es

∑N
n=1(Xn−µ) ≥ esεN

]
, ∀s > 0

≤
E
[
es

∑N
n=1(Xn−µ)

]
esεN

, Markov Inequality

=

(
E
[
es(Xn−µ)

]
esε

)N

, Independence

If we let Zn = Xn − µ, then

E[es(Xn−µ)] = MZn(s) = MGF of Zn.
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Hoeffding Lemma

So now we have

P[ν − µ ≥ ε] ≤

(
E
[
es(Xn−µ)

]
esε

)N

Lemma (Hoeffding Lemma)

If a ≤ Xn ≤ b, then

E
[
es(Xn−µ)

]
≤ e

s2(b−a)2

8

This leads to

P[ν − µ ≥ ε] =

(
E
[
es(Xn−µ)

]
esε

)N

≤

e
s2

8

esε

N

= e
s2N
8
−sεN , ∀s > 0.
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Minimization

Finally, we arrive at:

P[ν − µ ≥ ε] ≤ e
s2N
8
−sεN .

Since holds for all s > 0, in particular it holds for the minimizer:

P[ν − µ ≥ ε] ≤ e
smin

2N

8
−sminεN = min

s>0

{
e

s2N
8
−sεN

}
Minimizing the exponent gives: d

ds

{
s2N
8 − sεN

}
= sN

4 − εN = 0. So

s = 4ε.

P[ν − µ ≥ ε] ≤ e
(4ε)2N

8
−(4ε)εN = e−2ε

2N .
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Hoeffding Inequality

Theorem (Hoeffding Inequality)

Let X1, . . . ,XN be random variables with 0 ≤ Xn ≤ 1, then

P [|ν − µ| > ε] ≤ 2e−2ε
2N
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Compare Hoeffding and Chebyshev

Chebyshev:

P [|ν − µ| ≥ ε] ≤ σ2

Nε2
.

Hoeffding:

P [|ν − µ| ≥ ε] ≤ 2e−2ε
2N .

Both are in the form of

P [|ν − µ| ≥ ε] ≤ δ.

Equivalent to: For probability at least 1− δ, we have

µ− ε ≤ ν ≤ µ+ ε.

Error bar / Confidence interval of ν.

δ =
σ2

Nε2
⇒ ε =

σ√
δN

δ = 2e−2ε
2N ⇒ ε =

√
1

2N
log

2

δ
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Example

Chebyshev: For probability at least 1− δ, we have

µ− σ√
δN
≤ ν ≤ µ+

σ√
δN

.

Hoeffding: For probability at least 1− δ, we have

µ−
√

1

2N
log

2

δ
≤ ν ≤ µ+

√
1

2N
log

2

δ
.

Example:

Alex: I have data X1, . . . ,XN . I want to estimate µ. How many data
points N do I need?

Bob: How much δ can you tolerate?

Alex: Alright. I only have limited number of data points. How good
my estimate is? (ε)

Bob: How many data points N do you have?
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Example

Chebyshev: For probability at least 1− δ, we have

µ− σ√
δN
≤ ν ≤ µ+

σ√
δN

.

Hoeffding: For probability at least 1− δ, we have

µ−
√

1

2N
log

2

δ
≤ ν ≤ µ+

√
1

2N
log

2

δ
.

Let δ = 0.01, N = 10000, σ = 1.

ε =
σ√
δN

= 0.1 ε =

√
1

2N
log

2

δ
= 0.016

Let δ = 0.01, ε = 0.01, σ = 1.

N ≥ σ2

ε2δ
= 1, 000, 000. N ≥

log 2
δ

2ε2
≈ 26, 500.
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Reading List

Abu-Mustafa, Learning from Data, Chapter 2.

Martin Wainwright, High Dimensional Statistics, Cambridge
University Press 2019. (Chapter 2)

Cornell Note,
https://www.cs.cornell.edu/~sridharan/concentration.pdf

CMU Note,
http://www.stat.cmu.edu/~larry/=sml/Concentration.pdf

Stanford Note,
http://cs229.stanford.edu/extra-notes/hoeffding.pdf

22 / 22

https://www.cs.cornell.edu/~sridharan/concentration.pdf
http://www.stat.cmu.edu/~larry/=sml/Concentration.pdf
http://cs229.stanford.edu/extra-notes/hoeffding.pdf

