ECE595 / STAT598: Machine Learning I Lecture 23 Probability Inequality

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Basic Inequalities
- Markov and Chebyshev
- Interpreting the results
- Advance Inequalities
- Chernoff inequality
- Hoeffding inequality

Empirical Average

- We want to take a detour to talk about probability inequalities
- These inequalities will become useful when studying learning theory

Let us look at 1D case.

- You have random variables $X_{1}, X_{2}, \ldots, X_{N}$.
- Assume independently identically distributed i.i.d.
- This implies

$$
\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[X_{2}\right]=\ldots=\mathbb{E}\left[X_{N}\right]=\mu
$$

- You compute the empirical average

$$
\nu=\frac{1}{N} \sum_{n=1}^{N} X_{n}
$$

- How close is ν to μ ?

As N grows ...

As N grows ...

Interpreting the Empirical Average

$$
\nu=\frac{1}{N} \sum_{n=1}^{N} X_{n}
$$

- ν is a random variable
- ν has CDF and PDF
- ν has mean

$$
\begin{aligned}
\mathbb{E}[\nu]=\mathbb{E}\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}\right] & =\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}\left[X_{n}\right] \\
& =\frac{1}{N} N \mu=\mu
\end{aligned}
$$

- Note that " $\mathbb{E}[\nu]=\mu$ " is not the same as " $\nu=\mu$ ".
- What is the probability ν deviates from μ ?

Probability of Bad Event

$$
\mathbb{P}[|\nu-\mu|>\epsilon]=?
$$

- $\mathcal{B}=\{|\nu-\mu|>\epsilon\}$: The \mathcal{B} ad event: ν deviates from μ by at least ϵ
- $\mathbb{P}[\mathcal{B}]=$ probability that this bad event happens.
- Want $\mathbb{P}[\mathcal{B}]$ small. So upper bound it by δ.

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq \delta
$$

- With probability no greater than δ, \mathcal{B} ad event happens.
- Rearrange the equation:

$$
\mathbb{P}[|\nu-\mu| \leq \epsilon]>1-\delta
$$

- With probability at least $1-\delta$, the \mathcal{B} ad event will not happen.

Markov Inequality

Theorem (Markov Inequality)
For any $X>0$ and $\epsilon>0$,

$$
\mathbb{P}[X \geq \epsilon] \leq \frac{\mathbb{E}[X]}{\epsilon}
$$

$$
\begin{aligned}
\epsilon \mathbb{P}[X \geq \epsilon] & =\epsilon \int_{\epsilon}^{\infty} p(x) d x \\
& =\int_{\epsilon}^{\infty} \epsilon p(x) d x \\
& \leq \int_{\epsilon}^{\infty} x p(x) d x \\
& \leq \int_{0}^{\infty} x p(x) d x=\mathbb{E}[X]
\end{aligned}
$$

Chebyshev Inequality

Theorem (Chebyshev Inequality)
Let X_{1}, \ldots, X_{N} be i.i.d. with $\mathbb{E}\left[X_{n}\right]=\mu$ and $\operatorname{Var}\left[X_{n}\right]=\sigma^{2}$. Define

$$
\nu=\frac{1}{N} \sum_{n=1}^{N} X_{n} .
$$

Then,

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq \frac{\sigma^{2}}{N \epsilon^{2}}
$$

$$
\mathbb{P}\left[|\nu-\mu|^{2}>\epsilon^{2}\right] \underbrace{\frac{\mathbb{E}\left[|\nu-\mu|^{2}\right]}{\epsilon^{2}}}_{\text {Markov }} \underbrace{=\frac{\operatorname{Var}[\nu]}{\epsilon^{2}}}_{\mathbb{E}\left[(\nu-\mu)^{2}\right]=\operatorname{var}[\nu]} \underbrace{=\frac{\sigma^{2}}{N \epsilon^{2}}}_{\operatorname{var}[\nu]=\frac{\sigma^{2}}{N}} .
$$

How Good is Chebyshev Inequality?

Weak Law of Large Number

Theorem (WLLN)
Let X_{1}, \ldots, X_{N} be a sequence of i.i.d. random variables with common mean μ. Let $M_{N}=\frac{1}{N} \sum_{n=1}^{N} X_{n}$. Then, for any $\varepsilon>0$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{P}\left[\left|M_{N}-\mu\right|>\varepsilon\right]=0 \tag{1}
\end{equation*}
$$

Remark:

- The limit is outside the probability.
- This means that the probability of the event $\left|M_{N}-\mu\right|>\varepsilon$ is diminishing as $N \rightarrow$.
- But diminishing probability can still have occasions where $\left|M_{N}-\mu\right|>\varepsilon$.
- It just means that these occasions do not happen often.

Strong Law of Large Number

Theorem (SLLN)
Let X_{1}, \ldots, X_{N} be a sequence of i.i.d. random variables with common mean μ. Let $M_{N}=\frac{1}{N} \sum_{n=1}^{N} X_{n}$. Then, for any $\varepsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left[\lim _{N \rightarrow \infty}\left|M_{N}-\mu\right|>\varepsilon\right]=0 \tag{2}
\end{equation*}
$$

Remark:

- The limit is inside the probability.
- We need to analyze the limiting object $\lim _{N \rightarrow \infty}\left|M_{N}-\mu\right|$
- This object may or may not exist. This object is another random variable.
- The probability is measuring the event that this limiting object will deviate significantly from ε
- There is no "occasional" outliers.

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Basic Inequalities
- Markov and Chebyshev
- Interpreting the results
- Advance Inequalities
- Chernoff inequality
- Hoeffding inequality

Hoeffding Inequality

Let us revisit the Bad event:

$$
\begin{aligned}
\mathbb{P}[|\nu-\mu| \geq \epsilon] & =\mathbb{P}[\nu-\mu \geq \epsilon \text { or } \quad \nu-\mu \leq-\epsilon] \\
& \leq \underbrace{\mathbb{P}[\nu-\mu \geq \epsilon]}_{\leq A}+\underbrace{\mathbb{P}[\nu-\mu \leq-\epsilon]}_{\leq A}, \quad \text { Union bound } \\
& \leq 2 A, \quad \text { (What is } A \text { ? To be discussed.) }
\end{aligned}
$$

Theorem (Hoeffding Inequality)
Let X_{1}, \ldots, X_{N} be random variables with $0 \leq X_{n} \leq 1$, then

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 \underbrace{e^{-2 \epsilon^{2} N}}_{=A}
$$

The e-trick + Markov Inequality

Let us check one side:

$$
\begin{aligned}
\mathbb{P}[\nu-\mu \geq \epsilon] & =\mathbb{P}\left[\frac{1}{N} \sum_{n=1}^{N} X_{n}-\mu \geq \epsilon\right]=\mathbb{P}\left[\sum_{n=1}^{N}\left(X_{n}-\mu\right) \geq \epsilon N\right] \\
& =\mathbb{P}\left[e^{s \sum_{n=1}^{N}\left(X_{n}-\mu\right)} \geq e^{s \epsilon N}\right], \quad \forall s>0 \\
& \leq \frac{\mathbb{E}\left[e^{s \sum_{n=1}^{N}\left(X_{n}-\mu\right)}\right]}{e^{s \epsilon N}}, \quad \text { Markov Inequality } \\
& =\left(\frac{\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right]}{e^{s \epsilon}}\right)^{N}, \quad \text { Independence }
\end{aligned}
$$

If we let $Z_{n}=X_{n}-\mu$, then

$$
\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right]=M_{Z_{n}}(s)=\text { MGF of } Z_{n} .
$$

Hoeffding Lemma

So now we have

$$
\mathbb{P}[\nu-\mu \geq \epsilon] \leq\left(\frac{\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right]}{e^{s \epsilon}}\right)^{N}
$$

Lemma (Hoeffding Lemma)
If $a \leq X_{n} \leq b$, then

$$
\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right] \leq e^{\frac{s^{2}(b-a)^{2}}{8}}
$$

This leads to

$$
\begin{aligned}
\mathbb{P}[\nu-\mu \geq \epsilon] & =\left(\frac{\mathbb{E}\left[e^{s\left(X_{n}-\mu\right)}\right]}{e^{s \epsilon}}\right)^{N} \\
& \leq\left(\frac{e^{\frac{s^{2}}{8}}}{e^{s \epsilon}}\right)^{N}=e^{\frac{s^{2} N}{8}-s \epsilon N}, \quad \forall s>0
\end{aligned}
$$

Minimization

Finally, we arrive at:

$$
\mathbb{P}[\nu-\mu \geq \epsilon] \leq e^{\frac{s^{2} N}{8}-s \epsilon N}
$$

Since holds for all $s>0$, in particular it holds for the minimizer:

$$
\mathbb{P}[\nu-\mu \geq \epsilon] \leq e^{\frac{s_{\min }^{2} N}{8}-s_{\min } \epsilon N}=\min _{s>0}\left\{e^{\frac{s^{2} N}{8}-s \epsilon N}\right\}
$$

Minimizing the exponent gives: $\frac{d}{d s}\left\{\frac{s^{2} N}{8}-s \epsilon N\right\}=\frac{s N}{4}-\epsilon N=0$. So $s=4 \epsilon$.

$$
\mathbb{P}[\nu-\mu \geq \epsilon] \leq e^{\frac{(4 \epsilon)^{2} N}{8}-(4 \epsilon) \epsilon N}=e^{-2 \epsilon^{2} N}
$$

Hoeffding Inequality

Theorem (Hoeffding Inequality)
Let X_{1}, \ldots, X_{N} be random variables with $0 \leq X_{n} \leq 1$, then

$$
\mathbb{P}[|\nu-\mu|>\epsilon] \leq 2 e^{-2 \epsilon^{2} N}
$$

Compare Hoeffding and Chebyshev

Chebyshev:

Hoeffding:

$$
\mathbb{P}[|\nu-\mu| \geq \epsilon] \leq \frac{\sigma^{2}}{N \epsilon^{2}}
$$

$$
\mathbb{P}[|\nu-\mu| \geq \epsilon] \leq 2 e^{-2 \epsilon^{2} N}
$$

Both are in the form of

$$
\mathbb{P}[|\nu-\mu| \geq \epsilon] \leq \delta
$$

Equivalent to: For probability at least $1-\delta$, we have

$$
\mu-\epsilon \leq \nu \leq \mu+\epsilon
$$

Error bar / Confidence interval of ν.

$$
\delta=\frac{\sigma^{2}}{N \epsilon^{2}} \Rightarrow \epsilon=\frac{\sigma}{\sqrt{\delta N}} \quad \delta=2 e^{-2 \epsilon^{2} N} \Rightarrow \epsilon=\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}}
$$

Example

Chebyshev: For probability at least $1-\delta$, we have

$$
\mu-\frac{\sigma}{\sqrt{\delta N}} \leq \nu \leq \mu+\frac{\sigma}{\sqrt{\delta N}}
$$

Hoeffding: For probability at least $1-\delta$, we have

$$
\mu-\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}} \leq \nu \leq \mu+\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}}
$$

Example:

- Alex: I have data X_{1}, \ldots, X_{N}. I want to estimate μ. How many data points N do I need?
- Bob: How much δ can you tolerate?
- Alex: Alright. I only have limited number of data points. How good my estimate is? (ϵ)
- Bob: How many data points N do you have?

Example

Chebyshev: For probability at least $1-\delta$, we have

$$
\mu-\frac{\sigma}{\sqrt{\delta N}} \leq \nu \leq \mu+\frac{\sigma}{\sqrt{\delta N}}
$$

Hoeffding: For probability at least $1-\delta$, we have

$$
\mu-\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}} \leq \nu \leq \mu+\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}}
$$

Let $\delta=0.01, N=10000, \sigma=1$.

$$
\epsilon=\frac{\sigma}{\sqrt{\delta N}}=0.1
$$

$$
\epsilon=\sqrt{\frac{1}{2 N} \log \frac{2}{\delta}}=0.016
$$

Let $\delta=0.01, \epsilon=0.01, \sigma=1$.

$$
N \geq \frac{\sigma^{2}}{\epsilon^{2} \delta}=1,000,000 . \quad N \geq \frac{\log \frac{2}{\delta}}{2 \epsilon^{2}} \approx 26,500
$$

Reading List

- Abu-Mustafa, Learning from Data, Chapter 2.
- Martin Wainwright, High Dimensional Statistics, Cambridge University Press 2019. (Chapter 2)
- Cornell Note, https://www.cs.cornell.edu/~sridharan/concentration.pdf
- CMU Note, http://www.stat.cmu.edu/~larry/=sml/Concentration.pdf
- Stanford Note, http://cs229.stanford.edu/extra-notes/hoeffding.pdf

