ECE595 / STAT598: Machine Learning I Lecture 23 Probability Inequality

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Basic Inequalities
 - Markov and Chebyshev
 - Interpreting the results
- Advance Inequalities
 - Chernoff inequality
 - Hoeffding inequality

Empirical Average

- We want to take a detour to talk about probability inequalities
- These inequalities will become useful when studying learning theory

Let us look at 1D case.

- You have random variables X_1, X_2, \ldots, X_N .
- Assume independently identically distributed i.i.d.
- This implies

$$\mathbb{E}[X_1] = \mathbb{E}[X_2] = \ldots = \mathbb{E}[X_N] = \mu$$

• You compute the **empirical average**

$$\nu = \frac{1}{N} \sum_{n=1}^{N} X_n$$

As *N* grows ...

As N grows ...

© Stanley Chan 2020. All Rights Reserved

Interpreting the Empirical Average

$$\nu = \frac{1}{N} \sum_{n=1}^{N} X_n$$

- ν is a random variable
- ν has CDF and PDF
- ν has mean

۲

$$\mathbb{E}[\nu] = \mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}X_n\right] = \frac{1}{N}\sum_{n=1}^{N}\mathbb{E}[X_n]$$
$$= \frac{1}{N}N\mu = \mu.$$

Note that "E[ν] = μ" is not the same as "ν = μ".
What is the probability ν deviates from μ?

© Stanley Chan 2020. All Rights Reserved

Probability of Bad Event

$$\mathbb{P}\left[|\nu - \mu| > \epsilon\right] = ?$$

- $\mathcal{B} = \{ |\nu \mu| > \epsilon \}$: The \mathcal{B} ad event: ν deviates from μ by at least ϵ
- $\mathbb{P}[\mathcal{B}] =$ probability that this bad event happens.
- Want $\mathbb{P}[\mathcal{B}]$ small. So upper bound it by δ .

$$\mathbb{P}\left[|\nu - \mu| > \epsilon\right] \leq \delta.$$

- With probability **no greater** than δ , \mathcal{B} ad event happens.
- Rearrange the equation:

$$\mathbb{P}\left[|\nu - \mu| \leq \epsilon\right] > 1 - \delta.$$

• With probability at least $1 - \delta$, the \mathcal{B} ad event will not happen.

7 / 22

Markov Inequality

Theorem (Markov Inequality) For any X > 0 and $\epsilon > 0$,

$$\mathbb{P}[X \ge \epsilon] \le \frac{\mathbb{E}[X]}{\epsilon}.$$

$$\epsilon \mathbb{P}[X \ge \epsilon] = \epsilon \int_{\epsilon}^{\infty} p(x) dx$$
$$= \int_{\epsilon}^{\infty} \epsilon p(x) dx$$
$$\leq \int_{\epsilon}^{\infty} x p(x) dx$$
$$\leq \int_{0}^{\infty} x p(x) dx = \mathbb{E}[X].$$

C Stanley Chan 2020. All Rights Reserved

Chebyshev Inequality

Theorem (Chebyshev Inequality)

Let X_1, \ldots, X_N be i.i.d. with $\mathbb{E}[X_n] = \mu$ and $\operatorname{Var}[X_n] = \sigma^2$. Define

$$\nu=\frac{1}{N}\sum_{n=1}^{N}X_{n}.$$

Then,

$$\mathbb{P}\left[|\nu - \mu| > \epsilon\right] \le \frac{\sigma^2}{N\epsilon^2}$$

C Stanley Chan 2020. All Rights Reserved

How Good is Chebyshev Inequality?

Weak Law of Large Number

Theorem (WLLN)

Let X_1, \ldots, X_N be a sequence of i.i.d. random variables with common mean μ . Let $M_N = \frac{1}{N} \sum_{n=1}^N X_n$. Then, for any $\varepsilon > 0$,

$$\lim_{N\to\infty}\mathbb{P}\left[|M_N-\mu|>\varepsilon\right]=0.$$

Remark:

- The limit is outside the probability.
- This means that the probability of the event $|M_N \mu| > \varepsilon$ is diminishing as $N \rightarrow .$
- But diminishing probability can still have occasions where $|M_N \mu| > \varepsilon$.
- It just means that these occasions do not happen often.

(1

Strong Law of Large Number

Theorem (SLLN)

Let X_1, \ldots, X_N be a sequence of i.i.d. random variables with common mean μ . Let $M_N = \frac{1}{N} \sum_{n=1}^N X_n$. Then, for any $\varepsilon > 0$,

$$\mathbb{P}\left[\lim_{N\to\infty}|M_N-\mu|>\varepsilon\right]=0.$$
 (2)

Remark:

- The limit is inside the probability.
- We need to analyze the limiting object $\lim_{N \to \infty} |M_N \mu|$
- This object may or may not exist. This object is another random variable.
- The probability is measuring the event that this limiting object will deviate significantly from ε
- There is no "occasional" outliers.

Outline

- Lecture 22 Is Learning Feasible?
- Lecture 23 Probability Inequality
- Lecture 24 Probably Approximate Correct

Today's Lecture:

- Basic Inequalities
 - Markov and Chebyshev
 - Interpreting the results
- Advance Inequalities
 - Chernoff inequality
 - Hoeffding inequality

Hoeffding Inequality

Let us revisit the Bad event:

$$\mathbb{P}[|\nu - \mu| \ge \epsilon] = \mathbb{P}[\nu - \mu \ge \epsilon \quad \text{or} \quad \nu - \mu \le -\epsilon]$$

$$\le \underbrace{\mathbb{P}[\nu - \mu \ge \epsilon]}_{\le A} + \underbrace{\mathbb{P}[\nu - \mu \le -\epsilon]}_{\le A}, \quad \text{Union bound}$$

$$\le 2A, \quad \text{(What is } A\text{? To be discussed.)}$$

Theorem (Hoeffding Inequality)

Let X_1, \ldots, X_N be random variables with $0 \le X_n \le 1$, then

$$\mathbb{P}\left[|\nu - \mu| > \epsilon\right] \le 2\underbrace{e^{-2\epsilon^2 N}}_{=A}$$

The *e*-trick + Markov Inequality

Let us check one side:

$$\mathbb{P}[\nu - \mu \ge \epsilon] = \mathbb{P}\left[\frac{1}{N}\sum_{n=1}^{N} X_n - \mu \ge \epsilon\right] = \mathbb{P}\left[\sum_{n=1}^{N} (X_n - \mu) \ge \epsilon N\right]$$
$$= \mathbb{P}\left[\frac{e^{s\sum_{n=1}^{N} (X_n - \mu)}}{e^{s}} \ge e^{s\epsilon}N\right], \quad \forall s > 0$$
$$\leq \frac{\mathbb{E}\left[e^{s\sum_{n=1}^{N} (X_n - \mu)}\right]}{e^{s\epsilon}N}, \quad \text{Markov Inequality}$$
$$= \left(\frac{\mathbb{E}\left[e^{s}(X_n - \mu)\right]}{e^{s\epsilon}}\right)^N, \quad \text{Independence}$$

If we let $Z_n = X_n - \mu$, then

$$\mathbb{E}[e^{s(X_n-\mu)}] = M_{Z_n}(s) = \mathsf{MGF} \text{ of } Z_n.$$

Hoeffding Lemma

So now we have

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le \left(\frac{\mathbb{E}\left[e^{s(X_n - \mu)}\right]}{e^{s\epsilon}}\right)^N$$

Lemma (Hoeffding Lemma)
If
$$a \le X_n \le b$$
, then
 $\mathbb{E}\left[e^{s(X_n-\mu)}\right] \le e^{\frac{s^2(b-a)^2}{8}}$

This leads to

$$\mathbb{P}[\nu - \mu \ge \epsilon] = \left(\frac{\mathbb{E}\left[e^{s(X_n - \mu)}\right]}{e^{s\epsilon}}\right)^N$$
$$\le \left(\frac{e^{\frac{s^2}{8}}}{e^{s\epsilon}}\right)^N = e^{\frac{s^2N}{8} - s\epsilon N}, \qquad \forall s > 0.$$
(C) Stanley Chan 2020. All

16 / 22

Minimization

Finally, we arrive at:

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le e^{\frac{s^2 N}{8} - s \epsilon N}.$$

Since holds for all s > 0, in particular it holds for the minimizer:

$$\mathbb{P}[\nu - \mu \ge \epsilon] \le e^{\frac{s_{\min}^2 N}{8} - s_{\min} \epsilon N} = \min_{s > 0} \left\{ e^{\frac{s^2 N}{8} - s \epsilon N} \right\}$$

Minimizing the exponent gives: $\frac{d}{ds}\left\{\frac{s^2N}{8}-s\epsilon N\right\}=\frac{sN}{4}-\epsilon N=0$. So $s=4\epsilon$.

$$\mathbb{P}[
u - \mu \ge \epsilon] \le e^{rac{(4\epsilon)^2 N}{8} - (4\epsilon)\epsilon N} = e^{-2\epsilon^2 N}$$

Hoeffding Inequality

Theorem (Hoeffding Inequality) Let X_1, \ldots, X_N be random variables with $0 \le X_n \le 1$, then

Chebyshev X Hoeffding

 $\mathbb{P}\left[|\nu-\mu|>\epsilon\right]\leq 2e^{-2\epsilon^2N}$

Compare Hoeffding and Chebyshev

Chebyshev:

$$\mathbb{P}\left[|\nu - \mu| \ge \epsilon\right] \le \frac{\sigma^2}{N\epsilon^2}.$$

Hoeffding:

$$\mathbb{P}\left[|\nu-\mu|\geq\epsilon\right]\leq 2e^{-2\epsilon^2N}.$$

Both are in the form of

$$\mathbb{P}\left[|\nu - \mu| \ge \epsilon\right] \le \delta.$$

Equivalent to: For probability at least $1 - \delta$, we have

$$\mu - \epsilon \le \nu \le \mu + \epsilon.$$

Error bar / **Confidence interval** of ν .

$$\delta = \frac{\sigma^2}{N\epsilon^2} \Rightarrow \epsilon = \frac{\sigma}{\sqrt{\delta N}} \qquad \qquad \delta = 2e^{-2\epsilon^2 N} \Rightarrow \epsilon = \sqrt{\frac{1}{2N}\log\frac{2}{\delta}}$$

© Stanley Chan 2020. All Rights Reserved 19 / 22

Example

Chebyshev: For probability at least $1 - \delta$, we have

$$\mu - \frac{\sigma}{\sqrt{\delta N}} \le \nu \le \mu + \frac{\sigma}{\sqrt{\delta N}}.$$

Hoeffding: For probability at least $1 - \delta$, we have

$$\mu - \sqrt{\frac{1}{2N}\log\frac{2}{\delta}} \le \nu \le \mu + \sqrt{\frac{1}{2N}\log\frac{2}{\delta}}.$$

Example:

- Alex: I have data X₁,..., X_N. I want to estimate μ. How many data points N do I need?
- Bob: How much δ can you tolerate?
- Alex: Alright. I only have limited number of data points. How good my estimate is? (ϵ)
- Bob: How many data points N do you have?

Example

Chebyshev: For probability at least $1 - \delta$, we have

$$\mu - \frac{\sigma}{\sqrt{\delta N}} \le \nu \le \mu + \frac{\sigma}{\sqrt{\delta N}}.$$

Hoeffding: For probability at least $1 - \delta$, we have

$$\mu - \sqrt{rac{1}{2N}\lograc{2}{\delta}} \leq
u \leq \mu + \sqrt{rac{1}{2N}\lograc{2}{\delta}}.$$

Let $\delta = 0.01$, N = 10000, $\sigma = 1$.

$$\epsilon = \frac{\sigma}{\sqrt{\delta N}} = 0.1$$
 $\epsilon = \sqrt{\frac{1}{2N}\log{\frac{2}{\delta}}} = 0.016$

Let $\delta = 0.01$, $\epsilon = 0.01$, $\sigma = 1$.

$$\mathsf{N} \geq rac{\sigma^2}{\epsilon^2 \delta} = 1,000,000.$$
 $\mathsf{N} \geq rac{\log rac{2}{\delta}}{2\epsilon^2} pprox 26,500.$

© Stanley Chan 2020. All Rights Reserved

Reading List

- Abu-Mustafa, Learning from Data, Chapter 2.
- Martin Wainwright, High Dimensional Statistics, Cambridge University Press 2019. (Chapter 2)
- Cornell Note,

https://www.cs.cornell.edu/~sridharan/concentration.pdf

• CMU Note,

http://www.stat.cmu.edu/~larry/=sml/Concentration.pdf

Stanford Note,

http://cs229.stanford.edu/extra-notes/hoeffding.pdf