ECE595 / STAT598: Machine Learning I Lecture 22 Is Learning Feasible?

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Learning Theory

- Welcome to Part 3 of ECE595 / STAT598!
- Here is what we have learned:
 - Part 1: The machine learning pipeline
 - Part 2: Classification methods
- What are we going to do in Part 3?
 - Now that we have a method, then what?
 - Will it do well? How well?
 - Will it fail? When?
 - Complex model = better?
 - More sample = better?
 - Can every problem be solved by learning?
 - When do you overfit?
 - How to avoid overfit?

Outline

Today's Lecture:

- What constitutes a learning problem?
 - Training and testing samples
 - Target and Hypothesis function
 - Learning Model
- Is learning feasible?
 - An example
 - The power of probability
- Training versus Testing
 - In-sample error
 - Out-sample error
 - Probability bound

Reference:

• Learning from Data, chapter 1.3

Dataset

Let us first talk about a dataset:

- Input vectors: x_1, \ldots, x_N
- Labels: *y*₁,...,*y*_N
- Training set: \mathcal{D}
- Target function f: Maps x_n to y_n
- Target function is always unknown to you

Training and Testing Set

Let us first talk about a dataset:

- In-sample: Samples that are inside the training set
- Out-sample: Samples that are outside the training set

Hypothesis Fucntion

- Hypothesis set: $\mathcal{H} = \{h_1, \dots, h_M\}$: Possible decision boundaries
- Algorithm: Picks h_m from \mathcal{H}
- Final hypothesis: g: The one you found

Learning Model

ney Chan 2020. All Rights Reserve

Outline

Today's Lecture:

- What constitutes a learning problem?
 - Training and testing samples
 - Target and Hypothesis function
 - Learning Model

• Is learning feasible?

- An example
- The power of probability
- Training versus Testing
 - In-sample error
 - Out-sample error
 - Probability bound

Is Learning Feasible?

In-sample and Out-sample:

- In-sample: Training Data
- Out-sample: Testing Data

When can we claim "learning is feasible"?

Suppose we have a training set \mathcal{D} , can we learn the target function f?

- "Learn" means: I use the data you give me to come up with an f
- "Successful" means: All in-samples are correctly predicted
- And all out-samples are also correctly predicted
- If YES, then we are in business.
- Learning is feasible!
- If NO, then we can go home and sleep.
- There is just no way to learn f from \mathcal{D} .

Example

- Let $\mathcal{X} = \{0,1\}^3$
- Each $\pmb{x} \in \mathcal{X}$ is a binary vector
- E.g., $\textbf{\textit{x}} = [0, \ 0, \ 1]^{\mathcal{T}}$ or $\textbf{\textit{x}} = [1, \ 0, \ 1]^{\mathcal{T}}$
- How many possible vectors are there? $2^3 = 8$
- Call them **x**₁,...,**x**₈
- There is a target function f
- f maps every x to a y
- $y \in \{+1, -1\}$
- E.g., f([0,0,1]) = +1, f([0,1,1]) = -1, etc.
- How many possible f's?
- You can think of f as a 8-bit vector
- E.g., f = [+1, -1, -1, -1, +1, +1, +1, -1].
- So there are $2^8 = 256$ possible f's.

Example

- We have 8 input vectors: $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_8\}$
- We have 256 hypotheses: $\mathcal{H} = \{h_1, \ldots, h_{256}\}$
- Is learning feasible?
- Give me a subset $\mathcal{D} \subset \mathcal{X}$, can I find a hypothesis $g \in \mathcal{H}$ such that g = f?
- Suppose here is what you are given: = −1, = +1. You know 6 out of 8. These are the training data.

	y _n		
0	0	0	0
0	0	1	•
0	1	0	•
0	1	1	0
1	0	0	•
1	0	1	0
1	1	0	?
1	1	1	?

Possibility 1

	Уn		
0	0	0	0
0	0	1	•
0	1	0	•
0	1	1	0
1	0	0	•
1	0	1	0
1	1	0	0
1	1	1	0

- $\bullet\,$ One 1's will give me $\bullet;$ Others give me $\circ\,$
- $\bullet\,$ So the last two entries should be $\circ\,$

Possibility 2

- Odd numbers of 1's give me •
- $\bullet\,$ Even numbers of 1's give me $\circ\,$
- So [1 1 0] should be \circ
- \bullet So $[1\;1\;1]$ should be \bullet

All the Possibilities

	x _n		y _n	g	f_1	f_2	f ₃	f ₄
0	0	0	0	0	0	0	0	0
0	0	1	•	•	•	٠	٠	٠
0	1	0	•	•	•	٠	٠	٠
0	1	1	0	0	0	0	0	0
1	0	0	•	•	•	٠	٠	•
1	0	1	0	0	0	0	0	0
1	1	0		0/●	0	•	0	•
1	1	1		∘/•	0	0	•	•

• f_1, f_2, f_3, f_4 are the only hypotheses you need to consider

- You just don't know which one out of the four to choose!
- You won't do better the random guess.
- So you haven't learned anything from the training data.
- Learning is infeasible.

The Power of Probability

Herry Chan 2020. All Rights Reserve

Outline

Today's Lecture:

- What constitutes a learning problem?
 - Training and testing samples
 - Target and Hypothesis function
 - Learning Model
- Is learning feasible?
 - An example
 - The power of probability
- Training versus Testing
 - In-sample error
 - Out-sample error
 - Probability bound

In-Sample Error

- Let x_n be a training sample
- h: Your hypothesis
- f: The unknown target function
- If $h(\mathbf{x}_n) = f(\mathbf{x}_n)$, then say training sample \mathbf{x}_n is correctly classified.
- This will give you the in-sample error

Definition (In-sample Error / Training Error)

Consider a training set $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and a target function f. The **in-sample error** (or the training error) of a hypothesis function $h \in \mathcal{H}$ is the empirical average of $\{h(\mathbf{x}_n) \neq f(\mathbf{x}_n)\}$:

$$E_{\rm in}(h) \stackrel{\rm def}{=} \frac{1}{N} \sum_{n=1}^{N} \llbracket h(\boldsymbol{x}_n) \neq f(\boldsymbol{x}_n) \rrbracket, \tag{1}$$

where $[\![\cdot]\!] = 1$ if the statement inside the bracket is true, and = 0 if the statement is false.

Out-Sample Error

- Let x be a *testing* sample drawn from p(x)
- *h*: Your hypothesis
- f: The unknown target function
- If h(x) = f(x), then say testing sample x is correctly classified.
- Since $\mathbf{x} \sim p(\mathbf{x})$, you need to compute the probability of error, called the **out-sample error**

Definition (Out-sample Error / Testing Error)

Consider an input space \mathcal{X} containing elements x drawn from a distribution $p_X(x)$, and a target function f. The **out-sample error** (or the testing error) of a hypothesis function $h \in \mathcal{H}$ is

$$\Xi_{\text{out}}(h) \stackrel{\text{def}}{=} \mathbb{P}[h(\mathbf{x}) \neq f(\mathbf{x})],$$
 (2)

where $\mathbb{P}[\cdot]$ measures the probability of the statement based on the distribution $p_{\mathbf{X}}(\mathbf{x})$.

In-sample VS Out-sample

In-Sample Error

$$\mathsf{E}_{\mathrm{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} \llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \rrbracket$$

Out-Sample Error

$$E_{\text{out}}(h) = \mathbb{P}[h(\mathbf{x}) \neq f(\mathbf{x})]$$

= $\underbrace{\llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \rrbracket}_{=1} \mathbb{P}\left\{h(\mathbf{x}_n) \neq f(\mathbf{x}_n)\right\}$
+ $\underbrace{\llbracket h(\mathbf{x}_n) = f(\mathbf{x}_n) \rrbracket}_{=0} \left(1 - \mathbb{P}\left\{h(\mathbf{x}_n) \neq f(\mathbf{x}_n)\right\}\right)$
= $\mathbb{E}\left\{\llbracket h(\mathbf{x}_n) \neq f(\mathbf{x}_n) \rrbracket\right\}$

© Stanley Chan 2020. All Rights Reserved

19/23

The Role of p(x)

- Learning is feasible if $x \sim p(x)$
- p(x) says: Training and testing are related
- If training and testing are unrelated, then hopeless the deterministic example shown previously
- If you draw training and testing samples with different bias, then you will suffer

When Will $E_{in} = E_{out}$?

Theorem (Hoeffding Inequality)

Let X_1, \ldots, X_N be a sequence of i.i.d. random variables such that $0 \le X_n \le 1$ and $\mathbb{E}[X_n] = \mu$. Then, for any $\epsilon > 0$,

$$\mathbb{P}\left[\left|\frac{1}{N}\sum_{n=1}^{N}X_{n}-\mu\right|>\epsilon\right]\leq 2e^{-2\epsilon^{2}N}.$$
(3)

C Stanley Chan 2020. All Rights Reserved

When Will $E_{in} = E_{out}$?

• To us, the inequality can be stated as

$$\mathbb{P}\left[|\mathcal{E}_{ ext{in}}(h) - \mathcal{E}_{ ext{out}}(h)| > \epsilon
ight] \leq 2e^{-2\epsilon^2N}$$

- N = number of training samples
- $\epsilon =$ tolerance level
- Hoeffding is applicable because $\llbracket h(x) \neq f(x) \rrbracket$ is either 1 or 0.

•
$$h(\mathbf{x}) \neq f(\mathbf{x})$$

• $h(\mathbf{x}) = f(\mathbf{x})$

Appendix