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N
Outline

Support Vector Machine
@ Lecture 19 SVM 1: The Concept of Max-Margin
@ Lecture 20 SVM 2: Dual SVM
@ Lecture 21 SVM 3: Soft SVM and Kernel SVM

This lecture: Support Vector Machine: Soft and Kernel
e Soft SVM

o Motivation

o Formulation

o Interpretation
o Kernel Trick

o Nonlinearity
e Dual Form
o Kernel SVM
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Linearly Not Separable

+ the points can be linearly separated but
there is a very narrow margin
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+ but possibly the large margin solution is
better, even though one constraint is violated

http://www.robots.ox.ac.

uk/~az/lectures/ml/lect2.pdf
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-
Soft Margin

@ We want to allow data points to stay inside the margin.
@ How about change
yi(w'x; + wo) > 1
to this one:
yiw'xj+w)>1-¢, and & >0.

o If § > 1, then x; will be misclassified.
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-
Soft Margin
@ We can consider this problem
A 1 5
minimize 2 [|wl>

subject to yj(waj +wg) > 1—¢,
§ >0, for j=1,...,n,

@ But we need to control &, for otherwise the solution will be £ = oo.
@ How about this:
minimize ||} + C[l¢|°
subject to  y;(w'x;+wp) >1—¢,
§ >0, for j=1,...,n,

@ Control the energy of &.
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N
Role of C

o If C is big, then we enforce £ to be small.

@ If C is small, then & can be big.

Soft-margin

small C’ medium C large C

Hard-margin
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No Misclassification?

@ You can have misclassification in soft SVM
@ & can be big for a few outliers

A 1
minimize 7HW||%+ CH§”2
w,wo,§ 2
subject to y;(w'x; +wp) > 1,
§ >0, for j=1,...,N.
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-
L1 Regularization

Instead of £1-norm, you can also do
S 1 5
minimize = ||w|5 + C|/£|1
w,wp,& 2
subject to yj(waJ- +wp) > 1-¢,
§ =0, for j=1,...,N.
This enforces € to be sparse.

Only a few entries samples are allowed to live in the margin.

The problem remains convex.

So you can still use CVX to solve the problem.
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Connection with Perceptron Algorithm

o In soft-margin SVM, & > 0 and y;(w' x; + wp) > 1 — & imply that
fj >0, and fj >1 —yj(Wij + Wo).

@ We can combine them to get
& > max{O, 1—yi(w'x;+ Wo)}
= [1 — yj(WTXJ' + Wo):|+

@ So if we use SVM with ¢; penalty, then

N
1
J(w,wo,€) = Sllwl[l3+CD ¢
j=1

N
1
= SIwlB+ €Y7 [1 = yi(w x4 wo)

= *
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Connection with Perceptron Algorithm

@ This means that the training loss is
N A
S o) = 37 [1 = yy(wTx; + o)+ 3wl
j=1
if we define A =1/C.
@ Now, you can make A — 0. This means C — oo
@ Then,

M=

I w, wo) = [1 —yi(wTx; + Wo)}+

.
[l
-

I
™=

max {0, 1—yj(wx;+ Wo)}

-,
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-

max {0, 1—yg(x;)}

Il
M=

.
I
—

10/23



Connection with Perceptron Algorithm

@ SVM Loss:
N
J(w,wo) = max{0, 1-yg(x)}
j=1
o Perceptron Loss:
N
J(w, wo) =Y max{0, —yg(x;)}
j=1

@ Therefore: SVM generalizes perceptron by allowing
A A
J(w.wo) =y max{0, 1-yg(x;)}+ 7wl
j=1

o ||w/|)3 regularizes the solution.
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Comparing Loss functions

Ly =1,1lx)
B

Zero-one loss
Hinge loss
Perceptron loss
Log loss

Squared hinge loss
Modified Huber loss

https://scikit-learn.
functions.html

T T T T Y
-3 -2 =1 0 1
Decision function fix)

org/dev/auto_examples/linear_model/plot_sgd_loss_
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https://scikit-learn.org/dev/auto_examples/linear_model/plot_sgd_loss_functions.html
https://scikit-learn.org/dev/auto_examples/linear_model/plot_sgd_loss_functions.html

N
Outline

Support Vector Machine
@ Lecture 19 SVM 1: The Concept of Max-Margin
@ Lecture 20 SVM 2: Dual SVM
@ Lecture 21 SVM 3: Soft SVM and Kernel SVM

This lecture: Support Vector Machine: Soft and Kernel
e Soft SVM

o Motivation

o Formulation

o Interpretation
o Kernel Trick

o Nonlinearity
e Dual Form
o Kernel SVM

13/23



N
The Kernel Trick

@ A trick to turn linear classifier to nonlinear classifier.
@ Dual SVM

ma;\<|>m|ze — 722)\ )\Jy,ij X; —1—2)\

i=1 j=1
subject to Z/\J-yj =0.
j=1

o Kernel Trick

maX|m|ze _*ZZ)\)\./)/I)/J x;) T d(x )"‘Z)‘j

i=1 j=1 j=1
n
subject to Z)\J-yj =0.
j=1

@ You have to do this in dual. Primal is hard. See next slide.
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N
The Kernel Trick
@ Define
K(xi, vxj) = CD(x,-)T(D(xJ-).
@ The matrix Q is

Yiyvix{ x1 ... yiynx{ xn
,\/2)/1X2TX1 )/2)/NX2TXN
Q= . .
)/NY1X,CX1 e YN)/NX/—CXN
o By Kernel Trick:

yiiK(xi, x1) ... yiynK(x1, xp)
Q- yoy1K(x2,x1) ... yaynK(x2,xn)
ynyiK(xn, x1) ... ynynK(xn, xn)
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Kernel

o The inner product ®(x;)T ®(x;) is called a kernel
K(xi,x}) = ®(x;) T (x)).
@ Second-Order Polynomial kernel
K(u,v) = (uv)2
@ Degree-Q Polynomial kernel
K(u,v) = (yuTv +¢)?.

@ Gaussian Radial Basis Function (RBF) Kernel

K(u,v) = exp{_“"—"”z}.

202
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N
SVM with Second Order Kernel

Boxed samples = Support vectors.
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Radial Basis Function

Radial Basis Function takes the form of

K(u,v) = exp{—y”u — VH2} .

¢ x x x
® ®
exp(—1|x —x[|*) exp(—10||x — x'[[*) exp(—100||x —x'*)
e Typical v € [0,1].
@ 7 too big: Over-fit.
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Non-Linear Transform for RBF?

@ Let us consider scalar u € R.
K(u,v) = exp{—(u— v)*}

= exp{—u?} exp{2uv} exp{—v?}
2, 2k ykyk

= exp{—u°} (Z o > exp{—v?}
k=0

T

21 22 23

= exp{—uv?} (1, \/ T 1/ Euz, \/ ?)!u3,...,>
21 22, 23, 5
X (1,\/1!v,\/2!v ,\/av ,...,) exp{—v-}
@ So dis

21 22 23
®(x) = exp{—x?} (1, \/ % 1/ §X2, \/ §X3, .. ,)
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So You Need

Example. Radial Basis Function
K(u,v) = exp {—lu - vI]?}.

The non-linear transform is:
21 22 23
®(x) = exp{—x?} <1, \/ TRl \/ EXQ’ \/ §X3, . ,)

You need infinite dimensional non-linear transform!

But to compute the kernel K(u, v) you do not need ®.

Another Good thing about Dual SVM: You can do infinite
dimensional non-linear transform.

e Cost of computing K(u, v) is bottleneck by |lu — v||?.
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Is RBF Always Better than Linear?

(o]
O x
% (o)
x Q
O
X x
x
x x
)

O

(a) linear classifier

o Noisy dataset: Linear works well.

o RBF: Over fit.

(b) Gaussian-RBF kernel
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-
Testing with Kernels

o Recall:
N
wh = Z AnYnXn.
n=1
@ The hypothesis function is

h(x) = sign <w X+ WO

N T
= sign ( )\ny,,xn X+ wy
( N
n—=

Aiynx I x + WS‘) .
1

o Now you can replace x x by K(x,, x).
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Reading List

Support Vector Machine
o Mustafa, Learning from Data, e-Chapter
o Duda-Hart-Stork, Pattern Classification, Chapter 5.5
o Chris Bishop, Pattern Recognition, Chapter 7.1

@ UCSD Statistical Learning
http://www.svcl.ucsd.edu/courses/ece271B-F09/
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