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N
Outline

Support Vector Machine
@ Lecture 19 SVM 1: The Concept of Max-Margin
@ Lecture 20 SVM 2: Dual SVM
@ Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine: Duality

@ Lagrange Duality
o Maximize the dual variable
e Minimax Problem
o Toy Example

@ Dual SVM

o Formulation
e Interpretation
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Support Vector Machine
SVM is the solution of this optimization
1
minimize || w3
w,wo 2

subject to yj(waJ- +w)>1, j=1,....N.

optimal SVM
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Lagrange Function

@ Goal: Construct the dual problem of
1
minimize =| w||3
wwo 2
subject to yj(waj +w)>1, j=1,...,N.
o Approach: Consider the Lagrangian function

N
def 1
E(w, Wo,)\) el EHWH% —l—Z)\j[l—yj(waj—l—Wo)],
~— j=1
objective constraint

@ Solution happens at the saddle point of L:

Viwwo)L(W, wo,A) =0, and VrL(w,wp,A)=0.
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Lagrangian function

@ The Lagrangian function is

£(w, w0, 3) % | ||2+ZA[ — (W xj + wo)|

<0

o Complementarity Condition says
° )\j > 0 and [1 —yJ'(WTXj + Wo)] =0
e Aj=0and [1—y(w'x;+w)] <0
e So, if we want VyL(w, wp, A) = 0, then must be one of the two
cases:

Z)\j [1 —yi(wTx; + Wo)} — max or min
j=1
@ No saddle point because linear in A.
o But 1 — yj(w'x;+ wp) <0. So unbounded minimum. So must go

with maximum.
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Primal Problem

o Let \* as the maximizer
N

Ax &ef argmax Z)\j [1 —yi(wTx; + wp)
a0 | o

@ Then the primal problem is
minimize L(w, wp, A*)
w,wo

N
L 1 2 T
= minimize 5”WH2 + TSB( g 1 Aj [1 —yi(w'x;+ Wo)]
J:

= minimize { max L(w, Wo,)\)}

w,wo A>0
@ This is a min-max problem:

min max L(w, wg, A
wwo A>0 (w, wo, A)
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-
Strong Duality

@ Recall that our problem is quadratic programming (QP).
@ Strong Duality holds for QP:

min max L(w,wp,A) = max min L(w,wp, A)
w,wy A>0 A>0 w,wp
primal dual

[flx)

strong duality weak duality
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-
Toy Example

@ The SVM problem
1
minimize ~| w||3
w,wo 2

subject to yj(waj +wy)>1, j=1,...,N.

is in the form of

minimize |[u||?>, subject to ajTu >b;, j=1,2,...,N
u
o Example:
1 2 u 2
minimize u? + u3, subject to 10 [ 1] > 10
e o 1| " o

o Can we write down its dual problem?
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-
Toy Example

e Lagrangian function is

E(u, )\) d:ef U% + ug + )\1(2 —uy — 2U2) — AoU1 — A3U3

@ Minimize over u:

oL A1+ A2
— =0 = =
8u1 h 2
oL 201 + A3
— =0 = =—.
8U2 1 2

@ Plugging into the Lagrangian function yields

1

1 1
maximize L(A) = —%)\f — ZA% — ZA% — 5Mh = Ads + 24

subject to A>0.

@ Primal is QP. Dual is also QP.
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-
Have We Gained Anything?

@ Here is the dual problem:

. 5, 1, 1., 1
maximize  L(A) = —Z/\%—Z)\g—z)\g—i)\l)\z—)\l/\g + 21

subject to A > 0.

@ These terms are all negative! So we must have A\p = A3 = 0.
@ This gives

maximize —f)\ + 2)1.
A1>0

which is maximized at \; = &
@ Plugging into the primal yields

_)\1—|—)\2_2 _2)\1—|-)\3_4
u = > = and = —— = —.
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Outline

Support Vector Machine
@ Lecture 19 SVM 1: The Concept of Max-Margin
@ Lecture 20 SVM 2: Dual SVM
@ Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine: Duality

@ Lagrange Duality
o Maximize the dual variable
e Minimax Problem
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@ Dual SVM
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N
Dual of SVM

@ We want to find the dual problem of
1
minimize ~| w||3
ww 2
subject to yj(waj +wy)>1, j=1....N.

@ We start with the Lagrangian function

N
def 1
L(w,wo, A) = EHWH% + z;)\j [1 —yi(wx; + wp)| .
J:
@ Let us minimize over (w, wp):
N
Vuwl(w,wp,A) =w — Z/\J-ijj =0
j=1
Vo L(w, wp, A Z)‘Jyl =0.
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.
Interpreting V L(w, wp, A) =0

@ The first result suggests that

N
w = Z)\jijj'.
j=1

@ This is support vector: A; is either \; =0 or \; > 0.

- support vectors
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-
Interpreting V L(w, wp, A) =0
@ The complementarity condition states that
A: [1 —yi(wTx; + Wg)} =0, for j=1,...,N.

o If1 —yj(w*TxJ- + wg) > 0, then )\7 =0
o If \¥ >0, then 1 — y;(w*Tx; + wg) =0

@ So you can define the support vector set:
def .\«
VE |\ >0}

@ So the optimal weight is

X * . 3
w = Z)\jijj.
JjeV
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-
Back to Duality

The Lagrangian function is

N
* * 1 * *
L, w6, A) = SIw 1B+ D72 [1 = (W) x4 wo)

j=1

1< 2
=5 > Aiyix

Jj=1 5

A
N n T
+Z/\j 1—y (ZA;y,-x,-) Xj+ wp
=1 i—1

B
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-
Back to Duality

@ We can show that

1 N N
= EZZAV\J'MX,TXJ

i=1 j=1
N N N N
B:ZAJ—ZZ)\ JYiYiX; xJ Z/\J-yj wo
Jj=1 i=1 j=1 —10

@ and we can show that

N N

N
A+ B— Z)\j+%ZZ)\i)\jyl'.){]-x;’—xj

j=1 i=1 j=1
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-
Back to Duality

@ Therefore, the dual problem is

ma;\qmlze — 722)\ )\Jy,ij X —1—2)\

i=1 j=1
subject to Z)\jyj =0.
j=1

o If you prefer matrix-vector:

1
maximize — AT QXA +17X
A>0 2

subject to y'A =0.
@ We can combine the constraints A > 0 and yT)\ =0 as

A\ > 0.
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-
Back to Duality

e y" X\ =0 means
yT)\ >0, and yT)\ <0.
@ Thus, we can write y "X =0 as
T
y 0
> .
2=l

@ Therefore, the matrices Q and A are

)/1)/1X1TX1 e )/1yNX1TXN T
T T y
y2y1X X1 e ygyNX XN
Q= . . . and A= |-yT
)

T T
YNYIX XL oo YNYNX XN
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N
So How to Solve the SVM Problem?

@ You look at the dual problem
1
maxi}\mize — EATQ)\ +17x
subject to A\ > 0.

@ You get the solution A*.

@ Then compute w*:

X * . 3
w = Z)‘Jyle'
JjEV

@ V is the set of support vectors: \; > 0.
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N
Are We Done Yet?

o Not quite.
@ We still need to find out wy.
e Pick any support vector x* € C, and x~ € C_.
@ Then we have
wxt + wo = +1, and wix™ + wy = —1.
@ Sum them, we have w'(x* + x~) + 2wp = 0, which means
+ —\T ,,,*
Wi = T x)w

2
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-
Summary of Dual SVM

@ Primal

o1 2
minimize =||w||5
wwo 2

subject to y;(w'x; +wp)>1, j=1,...,N.

@ Strong Duality

@ Dual

min max L(w,wp,A) = max min L(w,wp, )
w,wy A>0 A>0 w,wg
primal dual

ma;‘<|>m|ze — 722)\ )\Jy,ij X —1—2)\

i=1 j=1

subject to Z)\J-yj =0.

Jj=1
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-
Summary of Dual SVM

@ The weights are computed as

N
* * . 3
w* = g )\J-ijj.
Jj=1

This is support vector: \; is either \; =0 or \; > 0.
Pick any support vector x* € Cy and x~ € C_.

@ Then we have
wxt + wo = +1, and wix™ + wo = —1.
o Sum them, we have w’ (x* 4+ x7) 4+ 2wy = 0, which means

(X+ + X_)TW*
2

wy = —
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-
Summary of Dual SVM

-~ support vectors
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-
Reading List

Support Vector Machine
o Mustafa, Learning from Data, e-Chapter
o Duda-Hart-Stork, Pattern Classification, Chapter 5.5
o Chris Bishop, Pattern Recognition, Chapter 7.1

@ UCSD Statistical Learning
http://www.svcl.ucsd.edu/courses/ece271B-F09/
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Appendix
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Inequality Constrained Optimization

Inequality constrained optimization:

f'
ml)r(1€|5r£"|ze (x)

subject to gj(x) >

Requires a function: Lagrangian function

k
L(x,p,v Zu,g, = > _vihi(x)
=1

1 € R™ and v € R¥ are called the Lagrange multipliers or the dual
variables.
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N
Karush-Kahn-Tucker Conditions

If (x*, u*,v*) is the solution to the constrained optimization, then all the
following conditions should hold:
(i) VeL(x*, pu*,v*)=0.
o Stationarity.
o The primal variables should be stationary.
(ii) gi(x*) > 0 and hj(x*) =0 for all i and j.
o Primal Feasibility.
o Ensures that constraints are satisfied.
(iii) pr >0 for all i and j.
o Dual Feasibility.
e Require pf > 0; but no constraint on v}.
(iv) pigi(x*) =0 forall i and j.
o Complementary Slackness
o Either uf =0 or gi(x*) = 0 (or both).
KKT Condition is a first order necessary condition.
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Example: />-minimization with two constraints

Solve the following least squares over positive quadrant problem.
o1 >
minimize —|x — b
nimize > x — |,

subject to x’1=1, and x>0.

%MATLAB code: Use CVX to solve min ||x-b|| s.t. sum(x) = 1, x >= 0.
cvx_begin
variable x(n)
minimize( norm(x-b, 2) )
subject to
sum(x) == 1;
X >= 0;

cvx_end
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-
Analytic Solution

1
L6 A7) = 5lx = yl* = ATx =51 =xT1).
Stationarity suggests that:
VxL(X,A,7)=x—b—-A+~71=0

This means
X:b+)\*’yl or X,':b,'+)\,'*’y.

The complementary slackness implies A\;x; = 0.
@ Case 1: If \; =0, then

0
° X,':b;+){7’}/:b,'7"y.
e Since constraint requires x; > 0, this means b; > ~.
o Case 2: If A\; > 0, then x; = 0.
o x"Z bi+ N — 1.
o This implies b; + A\;j = 7.
e Since \; > 0, this implies b; < ~.
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These three cases can be re-written as:
o If by > ~, then x; = b — v
o If bj =, then x; = 0;
o If b <, then x; = 0.

Compactly written as

x = max(b —~1,0).
Primal feasibility implies that
x"1=1, o ix,- =1
Therefore, v needs to satisfy the equation

Zmax ,0)=1,

which can be found by domg a root-finding of

Zmax ,0) — 1.
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Non-CVX Implementation

%MATLAB code: solve min ||x-bl| s.t. sum(x) = 1, x >= 0.
n = 10;

b = randn(n,1);

fun = @(gamma) myfun(gamma,b);

gamma = fzero(fun,0);

x = max(b-gamma,0) ;

where the function myfun is defined as

function y = myfun(gamma,b)
y = sum(max(b-gamma,0))-1;
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