ECE595 / STAT598: Machine Learning I Lecture 20 Support Vector Machine: Duality

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

Outline

Support Vector Machine

- Lecture 19 SVM 1: The Concept of Max-Margin
- Lecture 20 SVM 2: Dual SVM
- Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine: Duality

- Lagrange Duality
- Maximize the dual variable
- Minimax Problem
- Toy Example
- Dual SVM
- Formulation
- Interpretation

Support Vector Machine

SVM is the solution of this optimization

$$
\begin{aligned}
\operatorname{minimize}_{\boldsymbol{w}, w_{0}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

Lagrange Function

- Goal: Construct the dual problem of

$$
\begin{aligned}
\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

- Approach: Consider the Lagrangian function

$$
\mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right) \stackrel{\text { def }}{=} \underbrace{\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}}_{\text {objective }}+\sum_{j=1}^{N} \lambda_{j} \underbrace{\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right]}_{\text {constraint }},
$$

- Solution happens at the saddle point of \mathcal{L} :

$$
\nabla_{\left(\boldsymbol{w}, w_{0}\right)} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\mathbf{0}, \quad \text { and } \quad \nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\mathbf{0}
$$

Lagrangian function

- The Lagrangian function is

$$
\mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right) \stackrel{\text { def }}{=} \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+\sum_{j=1}^{N} \lambda_{j} \underbrace{\left[1-y_{j}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}\right)\right]}_{\leq 0}
$$

- Complementarity Condition says
- $\lambda_{j}>0$ and $\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right]=0$
- $\lambda_{j}=0$ and $\left[1-y_{j}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{j}+w_{0}\right)\right]<0$
- So, if we want $\nabla_{\boldsymbol{\lambda}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\mathbf{0}$, then must be one of the two cases:

$$
\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right] \rightarrow \max \quad \text { or } \quad \min
$$

- No saddle point because linear in λ.
- But $1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \leq 0$. So unbounded minimum. So must go with maximum.

Primal Problem

- Let $\boldsymbol{\lambda}^{*}$ as the maximizer

$$
\boldsymbol{\lambda}^{*} \stackrel{\text { def }}{=} \underset{\boldsymbol{\lambda} \geq \mathbf{0}}{\operatorname{argmax}}\left\{\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right]\right\}
$$

- Then the primal problem is

$$
\begin{aligned}
& \underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}^{*}\right) \\
& =\operatorname{minimize}_{\boldsymbol{w}, w_{0}}\left\{\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+\max _{\boldsymbol{\lambda} \geq 0}\left\{\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right]\right\}\right\} \\
& =\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}}\left\{\max _{\boldsymbol{\lambda} \geq 0} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)\right\}
\end{aligned}
$$

- This is a min-max problem:

$$
\min _{\boldsymbol{w}, w_{0}} \max _{\boldsymbol{\lambda} \geq 0} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)
$$

Strong Duality

- Recall that our problem is quadratic programming (QP).
- Strong Duality holds for QP:

strong duality

weak duality

Toy Example

- The SVM problem

$$
\begin{aligned}
\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

is in the form of
$\underset{\boldsymbol{u}}{\operatorname{minimize}}\|\boldsymbol{u}\|^{2}, \quad$ subject to $\quad \boldsymbol{a}_{j}^{T} \boldsymbol{u} \geq b_{j}, j=1,2, \ldots, N$

- Example:

$$
\underset{u_{1}, u_{2}}{\operatorname{minimize}} u_{1}^{2}+u_{2}^{2}, \quad \text { subject to } \quad\left[\begin{array}{ll}
1 & 2 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \geq\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

- Can we write down its dual problem?

Toy Example

- Lagrangian function is

$$
\mathcal{L}(\boldsymbol{u}, \boldsymbol{\lambda}) \stackrel{\text { def }}{=} u_{1}^{2}+u_{2}^{2}+\lambda_{1}\left(2-u_{1}-2 u_{2}\right)-\lambda_{2} u_{1}-\lambda_{3} u_{3}
$$

- Minimize over \boldsymbol{u} :

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial u_{1}}=0 \Rightarrow u_{1}=\frac{\lambda_{1}+\lambda_{2}}{2} \\
& \frac{\partial \mathcal{L}}{\partial u_{2}}=0 \Rightarrow u_{2}=\frac{2 \lambda_{1}+\lambda_{3}}{2}
\end{aligned}
$$

- Plugging into the Lagrangian function yields

$$
\begin{array}{ll}
\underset{\lambda}{\operatorname{maximize}} & \mathcal{L}(\boldsymbol{\lambda})=-\frac{5}{4} \lambda_{1}^{2}-\frac{1}{4} \lambda_{2}^{2}-\frac{1}{4} \lambda_{3}^{2}-\frac{1}{2} \lambda_{1} \lambda_{2}-\lambda_{1} \lambda_{3}+2 \lambda_{1} \\
\text { subject to } \quad \lambda & \geq 0
\end{array}
$$

- Primal is QP. Dual is also QP.

Have We Gained Anything?

- Here is the dual problem:

$$
\begin{aligned}
& \underset{\lambda}{\operatorname{maximize}} \\
& \text { subject to } \quad \boldsymbol{L}(\boldsymbol{\lambda})=-\frac{5}{4} \lambda_{1}^{2}-\frac{1}{4} \lambda_{2}^{2}-\frac{1}{4} \lambda_{3}^{2}-\frac{1}{2} \lambda_{1} \lambda_{2}-\lambda_{1} \lambda_{3}+2 \lambda_{1} \\
& \text { s. }
\end{aligned}
$$

- These terms are all negative! So we must have $\lambda_{2}=\lambda_{3}=0$.
- This gives

$$
\underset{\lambda_{1} \geq 0}{\operatorname{maximize}}-\frac{5}{4} \lambda_{1}^{2}+2 \lambda_{1} .
$$

which is maximized at $\lambda_{1}=\frac{4}{5}$.

- Plugging into the primal yields

$$
u_{1}=\frac{\lambda_{1}+\lambda_{2}}{2}=\frac{2}{5}, \quad \text { and } \quad u_{2}=\frac{2 \lambda_{1}+\lambda_{3}}{2}=\frac{4}{5}
$$

Outline

Support Vector Machine

- Lecture 19 SVM 1: The Concept of Max-Margin
- Lecture 20 SVM 2: Dual SVM
- Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine: Duality

- Lagrange Duality
- Maximize the dual variable
- Minimax Problem
- Toy Example
- Dual SVM
- Formulation
- Interpretation

Dual of SVM

- We want to find the dual problem of

$$
\begin{aligned}
\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

- We start with the Lagrangian function

$$
\mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right) \stackrel{\text { def }}{=} \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right)\right] .
$$

- Let us minimize over (\boldsymbol{w}, w_{0}):

$$
\begin{aligned}
& \nabla_{\boldsymbol{w}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\boldsymbol{w}-\sum_{j=1}^{N} \lambda_{j} y_{j} \boldsymbol{x}_{j}=\mathbf{0} \\
& \nabla_{w_{0}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=\sum_{j=1}^{N} \lambda_{j} y_{j}=0
\end{aligned}
$$

Interpreting $\nabla_{\boldsymbol{w}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=0$

- The first result suggests that

$$
\boldsymbol{w}=\sum_{j=1}^{N} \lambda_{j} y_{j} \boldsymbol{x}_{j}
$$

- This is support vector: λ_{j} is either $\lambda_{j}=0$ or $\lambda_{j}>0$.

Interpreting $\nabla_{\boldsymbol{w}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\lambda}\right)=0$

- The complementarity condition states that

$$
\lambda_{j}^{*}\left[1-y_{j}\left(\boldsymbol{w}^{* T} \boldsymbol{x}_{j}+w_{0}^{*}\right)\right]=0, \quad \text { for } \quad j=1, \ldots, N .
$$

- If $1-y_{j}\left(\boldsymbol{w}^{* T} \boldsymbol{x}_{j}+w_{0}^{*}\right)>0$, then $\lambda_{j}^{*}=0$
- If $\lambda_{j}^{*}>0$, then $1-y_{j}\left(\boldsymbol{w}^{* T} \boldsymbol{x}_{j}+w_{0}^{*}\right)=0$
- So you can define the support vector set:

$$
\mathcal{V} \stackrel{\text { def }}{=}\left\{j \mid \lambda_{j}^{*}>0\right\}
$$

- So the optimal weight is

$$
\boldsymbol{w}^{*}=\sum_{j \in \mathcal{V}} \lambda_{j}^{*} y_{j} \boldsymbol{x}_{j} .
$$

Back to Duality

The Lagrangian function is

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{w}^{*}, w_{0}^{*}, \boldsymbol{\lambda}\right)= & \frac{1}{2}\left\|\boldsymbol{w}^{*}\right\|_{2}^{2}+\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\left(\boldsymbol{w}^{*}\right)^{T} \boldsymbol{x}_{j}+w_{0}\right)\right] \\
= & \underbrace{\frac{1}{2}\left\|\sum_{j=1}^{N} \lambda_{j} y_{j} \boldsymbol{x}_{j}\right\|_{2}^{2}}_{A} \\
& +\underbrace{\sum_{j=1}^{N} \lambda_{j}\left[1-y_{j}\left(\left(\sum_{i=1}^{n} \lambda_{i} y_{i} \boldsymbol{x}_{i}\right)^{T} \boldsymbol{x}_{j}+w_{0}\right)\right]}_{B=1}
\end{aligned}
$$

Back to Duality

- We can show that

$$
\begin{aligned}
& A=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j} \\
& B=\sum_{j=1}^{N} \lambda_{j}-\sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}-\underbrace{\left(\sum_{j=1}^{N} \lambda_{j} y_{j}\right)}_{=0} w_{0}
\end{aligned}
$$

- and we can show that

$$
A+B=\sum_{j=1}^{N} \lambda_{j}+\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}
$$

Back to Duality

- Therefore, the dual problem is

$$
\begin{aligned}
& \underset{\lambda \geq 0}{\operatorname{maximize}}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}+\sum_{j=1}^{N} \lambda_{j} \\
& \text { subject to } \sum_{j=1}^{N} \lambda_{j} y_{j}=0
\end{aligned}
$$

- If you prefer matrix-vector:

$$
\begin{aligned}
\underset{\boldsymbol{\lambda} \geq 0}{\operatorname{maximize}} & -\frac{1}{2} \boldsymbol{\lambda}^{T} \boldsymbol{Q} \boldsymbol{\lambda}+\mathbf{1}^{T} \boldsymbol{\lambda} \\
\text { subject to } & \boldsymbol{y}^{T} \boldsymbol{\lambda}=\mathbf{0}
\end{aligned}
$$

- We can combine the constraints $\boldsymbol{\lambda} \geq 0$ and $\boldsymbol{y}^{\top} \boldsymbol{\lambda}=\mathbf{0}$ as

$$
\boldsymbol{A} \boldsymbol{\lambda} \geq \mathbf{0}
$$

Back to Duality

- $\boldsymbol{y}^{\top} \boldsymbol{\lambda}=0$ means

$$
\boldsymbol{y}^{T} \boldsymbol{\lambda} \geq 0, \quad \text { and } \quad \boldsymbol{y}^{T} \boldsymbol{\lambda} \leq 0 .
$$

- Thus, we can write $\boldsymbol{y}^{\top} \boldsymbol{\lambda}=0$ as

$$
\left[\begin{array}{c}
\boldsymbol{y}^{T} \\
-\boldsymbol{y}^{T}
\end{array}\right] \boldsymbol{\lambda} \geq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- Therefore, the matrices \boldsymbol{Q} and \boldsymbol{A} are

$$
\boldsymbol{Q}=\left[\begin{array}{ccc}
y_{1} y_{1} \boldsymbol{x}_{1}^{T} \boldsymbol{x}_{1} & \ldots & y_{1} y_{N} \boldsymbol{x}_{1}^{T} \boldsymbol{x}_{N} \\
y_{2} y_{1} \boldsymbol{x}_{2}^{T} \boldsymbol{x}_{1} & \ldots & y_{2} y_{N} \boldsymbol{x}_{2}^{T} \boldsymbol{x}_{N} \\
\vdots & \vdots & \vdots \\
y_{N} y_{1} \boldsymbol{x}_{N}^{T} \boldsymbol{x}_{1} & \ldots & y_{N} y_{N} \boldsymbol{x}_{N}^{T} \boldsymbol{x}_{N}
\end{array}\right] \quad \text { and } \quad \boldsymbol{A}=\left[\begin{array}{c}
\boldsymbol{y}^{T} \\
-\boldsymbol{y}^{T} \\
\boldsymbol{l}
\end{array}\right]
$$

So How to Solve the SVM Problem?

- You look at the dual problem

$$
\begin{aligned}
& \underset{\boldsymbol{\lambda}}{\operatorname{maximize}}-\frac{1}{2} \boldsymbol{\lambda}^{T} \boldsymbol{Q} \boldsymbol{\lambda}+\mathbf{1}^{T} \boldsymbol{\lambda} \\
& \text { subject to } \boldsymbol{A} \boldsymbol{\lambda} \geq \mathbf{0}
\end{aligned}
$$

- You get the solution $\boldsymbol{\lambda}^{*}$.
- Then compute \boldsymbol{w}^{*} :

$$
\boldsymbol{w}^{*}=\sum_{j \in \mathcal{V}} \lambda_{j}^{*} y_{j} \boldsymbol{x}_{j} .
$$

- \mathcal{V} is the set of support vectors: $\lambda_{j}>0$.

Are We Done Yet?

- Not quite.
- We still need to find out w_{0}^{*}.
- Pick any support vector $\boldsymbol{x}^{+} \in \mathcal{C}_{+}$and $\boldsymbol{x}^{-} \in \mathcal{C}_{-}$.
- Then we have

$$
\boldsymbol{w}^{T} \boldsymbol{x}^{+}+w_{0}=+1, \quad \text { and } \quad \boldsymbol{w}^{T} \boldsymbol{x}^{-}+w_{0}=-1
$$

- Sum them, we have $\boldsymbol{w}^{T}\left(\boldsymbol{x}^{+}+\boldsymbol{x}^{-}\right)+2 w_{0}=0$, which means

$$
w_{0}^{*}=-\frac{\left(\boldsymbol{x}^{+}+\boldsymbol{x}^{-}\right)^{T} \boldsymbol{w}^{*}}{2}
$$

Summary of Dual SVM

- Primal

$$
\begin{aligned}
\underset{\boldsymbol{w}, w_{0}}{\operatorname{minimize}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to } & y_{j}\left(\boldsymbol{w}^{T} \boldsymbol{x}_{j}+w_{0}\right) \geq 1, \quad j=1, \ldots, N .
\end{aligned}
$$

- Strong Duality

- Dual

$$
\begin{aligned}
& \underset{\lambda \geq 0}{\operatorname{maximize}}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}+\sum_{j=1}^{N} \lambda_{j} \\
& \text { subject to } \sum_{j=1}^{N} \lambda_{j} y_{j}=0
\end{aligned}
$$

Summary of Dual SVM

- The weights are computed as

$$
\boldsymbol{w}^{*}=\sum_{j=1}^{N} \lambda_{j}^{*} y_{j} \boldsymbol{x}_{j}
$$

- This is support vector: λ_{j} is either $\lambda_{j}=0$ or $\lambda_{j}>0$.
- Pick any support vector $\boldsymbol{x}^{+} \in \mathcal{C}_{+}$and $\boldsymbol{x}^{-} \in \mathcal{C}_{-}$.
- Then we have

$$
\boldsymbol{w}^{\top} \boldsymbol{x}^{+}+w_{0}=+1, \quad \text { and } \quad \boldsymbol{w}^{\top} \boldsymbol{x}^{-}+w_{0}=-1
$$

- Sum them, we have $\boldsymbol{w}^{T}\left(\boldsymbol{x}^{+}+\boldsymbol{x}^{-}\right)+2 w_{0}=0$, which means

$$
w_{0}^{*}=-\frac{\left(\boldsymbol{x}^{+}+\boldsymbol{x}^{-}\right)^{T} \boldsymbol{w}^{*}}{2}
$$

Summary of Dual SVM

Reading List

Support Vector Machine

- Mustafa, Learning from Data, e-Chapter
- Duda-Hart-Stork, Pattern Classification, Chapter 5.5
- Chris Bishop, Pattern Recognition, Chapter 7.1
- UCSD Statistical Learning
http://www.svcl.ucsd.edu/courses/ece271B-F09/

Appendix

Inequality Constrained Optimization

Inequality constrained optimization:

$$
\begin{array}{rll}
\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(\boldsymbol{x}) & \\
\text { subject to } & g_{i}(\boldsymbol{x}) \geq 0, & i=1, \ldots, m \\
& h_{j}(\boldsymbol{x})=0, & j=1, \ldots, k .
\end{array}
$$

Requires a function: Lagrangian function

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text { def }}{=} f(\boldsymbol{x})-\sum_{i=1}^{m} \mu_{i} g_{i}(\boldsymbol{x})-\sum_{j=1}^{k} \nu_{j} h_{j}(\boldsymbol{x})
$$

$\boldsymbol{\mu} \in \mathbb{R}^{m}$ and $\boldsymbol{\nu} \in \mathbb{R}^{k}$ are called the Lagrange multipliers or the dual variables.

Karush-Kahn-Tucker Conditions

If $\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{\nu}^{*}\right)$ is the solution to the constrained optimization, then all the following conditions should hold:
(i) $\nabla_{\boldsymbol{x}} \mathcal{L}\left(\boldsymbol{x}^{*}, \boldsymbol{\mu}^{*}, \boldsymbol{\nu}^{*}\right)=\mathbf{0}$.

- Stationarity.
- The primal variables should be stationary.
(ii) $g_{i}\left(\boldsymbol{x}^{*}\right) \geq 0$ and $h_{j}\left(\boldsymbol{x}^{*}\right)=0$ for all i and j.
- Primal Feasibility.
- Ensures that constraints are satisfied.
(iii) $\mu_{i}^{*} \geq 0$ for all i and j.
- Dual Feasibility.
- Require $\mu_{i}^{*} \geq 0$; but no constraint on ν_{i}^{*}.
(iv) $\mu_{i}^{*} g_{i}\left(\boldsymbol{x}^{*}\right)=0$ for all i and j.
- Complementary Slackness
- Either $\mu_{i}^{*}=0$ or $g_{i}\left(\boldsymbol{x}^{*}\right)=0$ (or both).

KKT Condition is a first order necessary condition.

Example: ℓ_{2}-minimization with two constraints

Solve the following least squares over positive quadrant problem.

$$
\begin{align*}
& \underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{b}\|^{2}, \tag{1}\\
& \text { subject to } \boldsymbol{x}^{T} \mathbf{1}=1, \quad \text { and } \quad \boldsymbol{x} \geq \mathbf{0}
\end{align*}
$$

```
%MATLAB code: Use CVX to solve min ||x-b|| s.t. sum(x) = 1, x >= 0.
cvx_begin
    variable x(n)
    minimize( norm(x-b, 2) )
    subject to
        sum(x) == 1;
        x >= 0;
cvx_end
```


Analytic Solution

$$
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \gamma)=\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}-\boldsymbol{\lambda}^{T} \boldsymbol{x}-\gamma\left(1-\boldsymbol{x}^{\top} \mathbf{1}\right)
$$

Stationarity suggests that:

$$
\nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \gamma)=\boldsymbol{x}-\boldsymbol{b}-\boldsymbol{\lambda}+\gamma \mathbf{1}=\mathbf{0}
$$

This means

$$
\boldsymbol{x}=\boldsymbol{b}+\boldsymbol{\lambda}-\gamma \mathbf{1} \quad \text { or } \quad x_{i}=b_{i}+\lambda_{i}-\gamma
$$

The complementary slackness implies $\lambda_{i} x_{i}=0$.

- Case 1: If $\lambda_{i}=0$, then
- $x_{i}=b_{i}+X_{i}^{0}-\gamma=b_{i}-\gamma$.
- Since constraint requires $x_{i} \geq 0$, this means $b_{i} \geq \gamma$.
- Case 2: If $\lambda_{i}>0$, then $x_{i}=0$.
- $x_{i}^{+0}=b_{i}+\lambda_{i}-\gamma$.
- This implies $b_{i}+\lambda_{i}=\gamma$.
- Since $\lambda_{i}>0$, this implies $b_{i}<\gamma$.

These three cases can be re-written as:

- If $b_{i}>\gamma$, then $x_{i}=b_{i}-\gamma$;
- If $b_{i}=\gamma$, then $x_{i}=0$;
- If $b_{i}<\gamma$, then $x_{i}=0$.

Compactly written as

$$
\boldsymbol{x}=\max (\boldsymbol{b}-\gamma \mathbf{1}, 0)
$$

Primal feasibility implies that

$$
\boldsymbol{x}^{T} \mathbf{1}=1, \quad \Leftrightarrow \quad \sum_{i=1}^{n} x_{i}=1
$$

Therefore, γ needs to satisfy the equation

$$
\sum_{i=1}^{n} \max \left(b_{i}-\gamma, 0\right)=1
$$

which can be found by doing a root-finding of

$$
g(\gamma)=\sum_{i=1}^{n} \max \left(b_{i}-\gamma, 0\right)-1
$$

Non-CVX Implementation

```
%MATLAB code: solve min ||x-b|| s.t. sum(x) = 1, x >= 0.
n = 10;
b = randn(n,1);
fun = @(gamma) myfun(gamma,b);
gamma = fzero(fun,0);
x = max(b-gamma,0);
```

where the function myfun is defined as

```
function y = myfun(gamma,b)
y = sum(max(b-gamma,0))-1;
```

