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Support Vector Machine

SVM is the solution of this optimization

minimize
w ,w0

1

2
‖w‖22

subject to yj(w
Tx j + w0) ≥ 1, j = 1, . . . ,N.
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Lagrange Function

Goal: Construct the dual problem of

minimize
w ,w0

1

2
‖w‖22

subject to yj(w
Tx j + w0) ≥ 1, j = 1, . . . ,N.

Approach: Consider the Lagrangian function

L(w ,w0,λ)
def
=

1

2
‖w‖22︸ ︷︷ ︸

objective

+
N∑
j=1

λj

[
1− yj(w

Tx j + w0)
]

︸ ︷︷ ︸
constraint

,

Solution happens at the saddle point of L:

∇(w ,w0)L(w ,w0,λ) = 0, and ∇λL(w ,w0,λ) = 0.
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Lagrangian function

The Lagrangian function is

L(w ,w0,λ)
def
=

1

2
‖w‖22 +

N∑
j=1

λj

[
1− yj(w

Tx j + w0)
]

︸ ︷︷ ︸
≤0

Complementarity Condition says
λj > 0 and

[
1− yj(w

T
x j + w0)

]
= 0

λj = 0 and
[
1− yj(w

T
x j + w0)

]
< 0

So, if we want ∇λL(w ,w0,λ) = 0, then must be one of the two
cases:

N∑
j=1

λj

[
1− yj(w

Tx j + w0)
]
→ max or min

No saddle point because linear in λ.
But 1− yj(w

Tx j + w0) ≤ 0. So unbounded minimum. So must go
with maximum.
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Primal Problem

Let λ∗ as the maximizer

λ∗
def
= argmax

λ≥0


N∑
j=1

λj

[
1− yj(w

Tx j + w0)
]

Then the primal problem is

minimize
w ,w0

L(w ,w0,λ
∗)

= minimize
w ,w0

1

2
‖w‖22 + max

λ≥0


N∑
j=1

λj

[
1− yj(w

Tx j + w0)
]


= minimize
w ,w0

{
max
λ≥0

L(w ,w0,λ)
}

This is a min-max problem:

min
w ,w0

max
λ≥0

L(w ,w0,λ)
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Strong Duality

Recall that our problem is quadratic programming (QP).
Strong Duality holds for QP:

min
w ,w0

max
λ≥0

L(w ,w0,λ)︸ ︷︷ ︸
primal

= max
λ≥0

min
w ,w0

L(w ,w0,λ)︸ ︷︷ ︸
dual

http://www.onmyphd.com/?p=duality.theory
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Toy Example

The SVM problem

minimize
w ,w0

1

2
‖w‖22

subject to yj(w
Tx j + w0) ≥ 1, j = 1, . . . ,N.

is in the form of

minimize
u

‖u‖2, subject to aTj u ≥ bj , j = 1, 2, . . . ,N

Example:

minimize
u1,u2

u21 + u22 , subject to

1 2
1 0
0 1

[u1
u2

]
≥

2
0
0


Can we write down its dual problem?
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Toy Example

Lagrangian function is

L(u,λ)
def
= u21 + u22 + λ1(2− u1 − 2u2)− λ2u1 − λ3u3

Minimize over u:

∂L
∂u1

= 0 ⇒ u1 =
λ1 + λ2

2
∂L
∂u2

= 0 ⇒ u2 =
2λ1 + λ3

2
.

Plugging into the Lagrangian function yields

maximize
λ

L(λ) = −5

4
λ21 −

1

4
λ22 −

1

4
λ23 −

1

2
λ1λ2 − λ1λ3 + 2λ1

subject to λ ≥ 0.

Primal is QP. Dual is also QP.
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Have We Gained Anything?

Here is the dual problem:

maximize
λ

L(λ) = −5

4
λ21−

1

4
λ22−

1

4
λ23−

1

2
λ1λ2−λ1λ3 + 2λ1

subject to λ ≥ 0.

These terms are all negative! So we must have λ2 = λ3 = 0.

This gives

maximize
λ1≥0

−5

4
λ21 + 2λ1.

which is maximized at λ1 = 4
5 .

Plugging into the primal yields

u1 =
λ1 + λ2

2
=

2

5
, and u2 =

2λ1 + λ3
2

=
4

5
.
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Dual of SVM

We want to find the dual problem of

minimize
w ,w0

1

2
‖w‖22

subject to yj(w
Tx j + w0) ≥ 1, j = 1, . . . ,N.

We start with the Lagrangian function

L(w ,w0,λ)
def
=

1

2
‖w‖22 +

N∑
j=1

λj

[
1− yj(w

Tx j + w0)
]
.

Let us minimize over (w ,w0):

∇wL(w ,w0,λ) = w −
N∑
j=1

λjyjx j = 0

∇w0L(w ,w0,λ) =
N∑
j=1

λjyj = 0.
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Interpreting ∇wL(w ,w0,λ) = 0

The first result suggests that

w =
N∑
j=1

λjyjx j .

This is support vector: λj is either λj = 0 or λj > 0.
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Interpreting ∇wL(w ,w0,λ) = 0

The complementarity condition states that

λ∗j

[
1− yj(w

∗Tx j + w∗0 )
]

= 0, for j = 1, . . . ,N.

If 1− yj(w
∗Tx j + w∗0 ) > 0, then λ∗j = 0

If λ∗j > 0, then 1− yj(w
∗Tx j + w∗0 ) = 0

So you can define the support vector set:

V def
= {j | λ∗j > 0}.

So the optimal weight is

w∗ =
∑
j∈V

λ∗j yjx j .
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Back to Duality

The Lagrangian function is

L(w∗,w∗0 ,λ) =
1

2
‖w∗‖22 +

N∑
j=1

λj

[
1− yj((w∗)Tx j + w0)

]

=
1

2

∥∥∥∥∥∥
N∑
j=1

λjyjx j

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
A

+
N∑
j=1

λj

1− yj

( n∑
i=1

λiyix i

)T

x j + w0


︸ ︷︷ ︸

B
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Back to Duality

We can show that

A =
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j

B =
N∑
j=1

λj −
N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j −

 N∑
j=1

λjyj


︸ ︷︷ ︸

=0

w0

and we can show that

A + B =
N∑
j=1

λj +
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j
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Back to Duality

Therefore, the dual problem is

maximize
λ≥0

− 1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j +

N∑
j=1

λj

subject to
N∑
j=1

λjyj = 0.

If you prefer matrix-vector:

maximize
λ≥0

− 1

2
λTQλ + 1Tλ

subject to yTλ = 0.

We can combine the constraints λ ≥ 0 and yTλ = 0 as

Aλ ≥ 0.
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Back to Duality

yTλ = 0 means

yTλ ≥ 0, and yTλ ≤ 0.

Thus, we can write yTλ = 0 as[
yT

−yT

]
λ ≥

[
0
0

]
.

Therefore, the matrices Q and A are

Q =


y1y1x

T
1 x1 . . . y1yNx

T
1 xN

y2y1x
T
2 x1 . . . y2yNx

T
2 xN

...
...

...
yNy1x

T
Nx1 . . . yNyNx

T
NxN

 and A =

 yT

−yT

I
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So How to Solve the SVM Problem?

You look at the dual problem

maximize
λ

− 1

2
λTQλ + 1Tλ

subject to Aλ ≥ 0.

You get the solution λ∗.

Then compute w∗:

w∗ =
∑
j∈V

λ∗j yjx j .

V is the set of support vectors: λj > 0.
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Are We Done Yet?

Not quite.

We still need to find out w∗0 .

Pick any support vector x+ ∈ C+ and x− ∈ C−.

Then we have

wTx+ + w0 = +1, and wTx− + w0 = −1.

Sum them, we have wT (x+ + x−) + 2w0 = 0, which means

w∗0 = −(x+ + x−)Tw∗

2
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Summary of Dual SVM

Primal

minimize
w ,w0

1

2
‖w‖22

subject to yj(w
Tx j + w0) ≥ 1, j = 1, . . . ,N.

Strong Duality

min
w ,w0

max
λ≥0

L(w ,w0,λ)︸ ︷︷ ︸
primal

= max
λ≥0

min
w ,w0

L(w ,w0,λ)︸ ︷︷ ︸
dual

Dual

maximize
λ≥0

− 1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i x j +

N∑
j=1

λj

subject to
N∑
j=1

λjyj = 0.
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Summary of Dual SVM

The weights are computed as

w∗ =
N∑
j=1

λ∗j yjx j .

This is support vector: λj is either λj = 0 or λj > 0.

Pick any support vector x+ ∈ C+ and x− ∈ C−.

Then we have

wTx+ + w0 = +1, and wTx− + w0 = −1.

Sum them, we have wT (x+ + x−) + 2w0 = 0, which means

w∗0 = −(x+ + x−)Tw∗

2
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Summary of Dual SVM
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Reading List

Support Vector Machine

Mustafa, Learning from Data, e-Chapter

Duda-Hart-Stork, Pattern Classification, Chapter 5.5

Chris Bishop, Pattern Recognition, Chapter 7.1

UCSD Statistical Learning
http://www.svcl.ucsd.edu/courses/ece271B-F09/
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Appendix
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Inequality Constrained Optimization

Inequality constrained optimization:

minimize
x∈Rn

f (x)

subject to gi (x) ≥ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , k.

Requires a function: Lagrangian function

L(x ,µ,ν)
def
= f (x)−

m∑
i=1

µigi (x)−
k∑

j=1

νjhj(x).

µ ∈ Rm and ν ∈ Rk are called the Lagrange multipliers or the dual
variables.
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Karush-Kahn-Tucker Conditions

If (x∗,µ∗,ν∗) is the solution to the constrained optimization, then all the
following conditions should hold:

(i) ∇xL(x∗,µ∗,ν∗) = 0.

Stationarity.
The primal variables should be stationary.

(ii) gi (x
∗) ≥ 0 and hj(x

∗) = 0 for all i and j .

Primal Feasibility.
Ensures that constraints are satisfied.

(iii) µ∗i ≥ 0 for all i and j .

Dual Feasibility.
Require µ∗

i ≥ 0; but no constraint on ν∗i .

(iv) µ∗i gi (x
∗) = 0 for all i and j .

Complementary Slackness
Either µ∗

i = 0 or gi (x
∗) = 0 (or both).

KKT Condition is a first order necessary condition.
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Example: `2-minimization with two constraints

Solve the following least squares over positive quadrant problem.

minimize
x∈Rn

1

2
‖x − b‖2,

subject to xT1 = 1, and x ≥ 0.
(1)

%MATLAB code: Use CVX to solve min ||x-b|| s.t. sum(x) = 1, x >= 0.

cvx_begin

variable x(n)

minimize( norm(x-b, 2) )

subject to

sum(x) == 1;

x >= 0;

cvx_end
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Analytic Solution

L(x ,λ, γ) =
1

2
‖x − y‖2 − λTx − γ(1− xT1).

Stationarity suggests that:

∇xL(x ,λ, γ) = x − b − λ + γ1 = 0

This means
x = b + λ− γ1 or xi = bi + λi − γ.

The complementary slackness implies λixi = 0.
Case 1: If λi = 0, then

xi = bi +���
0

λi − γ = bi − γ.
Since constraint requires xi ≥ 0, this means bi ≥ γ.

Case 2: If λi > 0, then xi = 0.

��>
0

xi = bi + λi − γ.
This implies bi + λi = γ.
Since λi > 0, this implies bi < γ.
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These three cases can be re-written as:

If bi > γ, then xi = bi − γ;
If bi = γ, then xi = 0;
If bi < γ, then xi = 0.

Compactly written as
x = max(b − γ1, 0).

Primal feasibility implies that

xT1 = 1, ⇔
n∑

i=1

xi = 1.

Therefore, γ needs to satisfy the equation
n∑

i=1

max(bi − γ, 0) = 1,

which can be found by doing a root-finding of

g(γ) =
n∑

i=1

max(bi − γ, 0)− 1.
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Non-CVX Implementation

%MATLAB code: solve min ||x-b|| s.t. sum(x) = 1, x >= 0.

n = 10;

b = randn(n,1);

fun = @(gamma) myfun(gamma,b);

gamma = fzero(fun,0);

x = max(b-gamma,0);

where the function myfun is defined as

function y = myfun(gamma,b)

y = sum(max(b-gamma,0))-1;
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