ECE595 / STAT598: Machine Learning I Lecture 19 Support Vector Machine: Intro

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

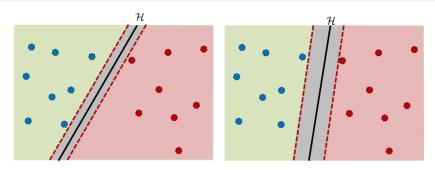
Support Vector Machine

- Lecture 19 SVM 1: The Concept of Max-Margin
- Lecture 20 SVM 2: Dual SVM
- Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine 1

- Concept of Margin
 - Distance from point to plane
 - Margin
 - Max Margin Classifier
- SVM
 - SVM via Optimization
 - Programming SVM
 - Visualization

Margin and Max-Margin Classifier



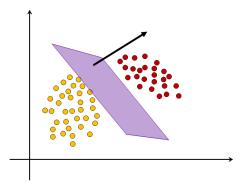
- Margin: Smallest gap between the two classes
- Max-Margin Classifier: A classifier that maximizes the margin
- What do we need?
 - How to measure the distance from a point to a plane?
 - How to formulate a max margin problem?
 - How to solve the max margin problem?

Recall: Linear Discriminant Function

In high-dimension,

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0.$$

is a hyperplane.



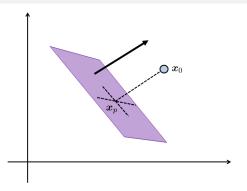
Separating Hyperplane:

$$\mathcal{H} = \{ x \mid g(x) = 0 \}$$

= $\{ x \mid w^T x + w_0 = 0 \}$

- $x \in \mathcal{H}$ means x is on the decision boundary.
- $w/||w||_2$ is the **normal vector** of \mathcal{H} .

Recall: Distance from x_0 to g(x) = 0



Therefore, we can show that

gnow that
$$g(\mathbf{x}_0) = \mathbf{w}^T \mathbf{x}_0 + w_0$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + \eta \frac{\mathbf{w}}{\|\mathbf{w}\|_2} \right) + w_0$$

$$= g(\mathbf{x}_p) + \eta \|\mathbf{w}\|_2 = \eta \|\mathbf{w}\|_2.$$

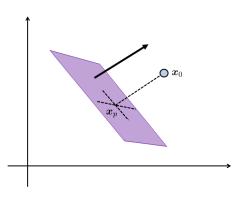
- Pick a point x_p on \mathcal{H}
- x_p is the closest point to x_0
- $x_0 x_p$ is the normal direction
- So, for some scalar $\eta > 0$,

$$\boldsymbol{x}_0 - \boldsymbol{x}_p = \eta \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_2}$$

• x_p is on \mathcal{H} . So

$$g(\mathbf{x}_p) = \mathbf{w}^T \mathbf{x}_p + w_0 = 0$$

Recall: Distance from x_0 to g(x) = 0



So distance is

$$\eta = \frac{g(\mathbf{x}_0)}{\|\mathbf{w}\|_2}$$

• The closest point x_p is

$$x_p = x_0 - \eta \frac{\mathbf{w}}{\|\mathbf{w}\|_2}$$
$$= x_0 - \frac{\mathbf{g}(\mathbf{x}_0)}{\|\mathbf{w}\|_2} \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|_2}.$$

Conclusion:

$$x_p = x_0 -$$

$$\underbrace{\frac{g(\mathbf{x}_0)}{\|\mathbf{w}\|_2}}_{\text{distance}}$$

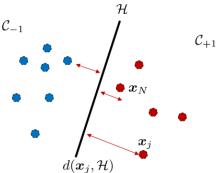
$$\frac{\mathbf{w}}{\|\mathbf{w}\|_2}$$

Unsigned Distance

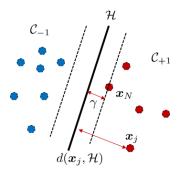
• We define the distance between a data point x_j and a separating hyperplane as

$$d(\mathbf{x}_j, \mathcal{H}) = \frac{|g(\mathbf{x}_j)|}{\|\mathbf{w}\|_2} = \frac{|\mathbf{w}^T \mathbf{x}_j + w_0|}{\|\mathbf{w}\|_2}.$$

• $d(x_i, \mathcal{H})$ is called **unsigned** distance



Margin

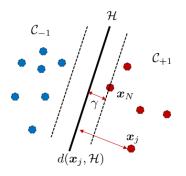


- Among all the unsigned distances, pick the smallest one.
- Margin: γ such that

$$\gamma = \min_{j=1,\dots,N} d(\mathbf{x}_j, \mathcal{H}).$$

• Without loss of generality, assume x_N is the closest point.

More about Margin



ullet Margin: γ such that

$$\gamma = \min_{j=1,\ldots,N} d(\mathbf{x}_j, \mathcal{H}).$$

- γ depends on (\mathbf{w}, w_0) .
- ullet γ always exist because training set is finite.
- $\gamma \geq$ 0, and is zero when x_N is on the boundary.

Signed Distance

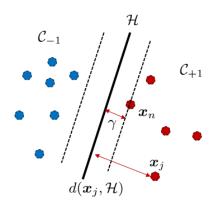
- $d(x_j, \mathcal{H})$ is unsigned
- ullet So γ does not tell whether a point ${m x}_j$ is correctly classified or not
- ullet Assume that the labels are defined as $y_j \in \{-1,+1\}$
- Then define a signed distance

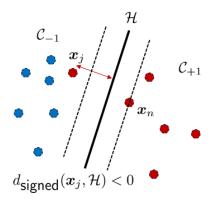
$$d_{\text{signed}}(\mathbf{x}_{j}, \mathcal{H}) = y_{j} \left(\frac{\mathbf{w}^{T} \mathbf{x}_{j} + w_{0}}{\|\mathbf{w}\|_{2}} \right)$$
$$= \begin{cases} \geq 0, & \text{correctly classify } \mathbf{x}_{j} \\ < 0, & \text{incorrectly classify } \mathbf{x}_{j}. \end{cases}$$

Recall perceptron loss:

$$\mathcal{L}(\boldsymbol{x}_j) = \max\left\{-y_j(\boldsymbol{w}^T\boldsymbol{x}_j + w_0), 0\right\}$$

Unsigned VS Signed Distance





- Unsigned distance: Just the distance
- Signed distance: Distance plus whether on the correct side

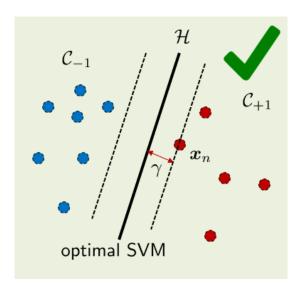
Max-Margin Objective

- Assumptions: Linearly separable.
- This means

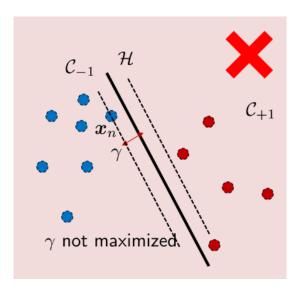
$$y_j\left(\frac{\boldsymbol{w}^T\boldsymbol{x}_j+w_0}{\|\boldsymbol{w}\|_2}\right)\geq \gamma, \quad j=1,\ldots,N.$$

- All training samples are correctly classified.
- ullet All training samples are at lest γ from the boundary.
- So the max-margin classifier is

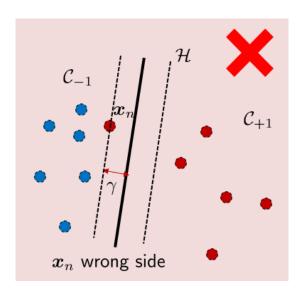
Good or Bad?



Good or Bad?



Good or Bad?



Outline

Support Vector Machine

- Lecture 19 SVM 1: The Concept of Max-Margin
- Lecture 20 SVM 2: Dual SVM
- Lecture 21 SVM 3: Kernel SVM

This lecture: Support Vector Machine 1

- Concept of Margin
 - Distance from point to plane
 - Margin
 - Max Margin Classifier
- SVM
 - SVM via Optimization
 - Programming SVM
 - Visualization

Unfortunately ...

• If I can solve the optimization problem

maximize
$$\gamma$$
 subject to $y_j\left(\frac{{\boldsymbol w}^T{\boldsymbol x}_j+w_0}{\|{\boldsymbol w}\|_2}\right)\geq \gamma,\quad j=1,\ldots,N.$

Then I can obtain a good SVM.

- But solving the optimization is not easy!
- γ depends on (\boldsymbol{w}, w_0) . If you change (\boldsymbol{w}, w_0) , you also change γ
- There is a term $1/\|\mathbf{w}\|_2$. Nonlinear.

Trick 1: Scaling

The optimization is

$$\label{eq:maximize} \begin{split} & \underset{\boldsymbol{w}, w_0}{\text{maximize}} & \gamma \\ & \text{subject to} & y_j \left(\frac{\boldsymbol{w}^T \boldsymbol{x}_j + w_0}{\|\boldsymbol{w}\|_2} \right) \geq \gamma, \quad j = 1, \dots, N. \end{split}$$

- Let x_N be the point closest to the boundary
- Define the smallest unsigned distance

$$\widetilde{\gamma} \stackrel{\text{def}}{=} |\mathbf{w}^T \mathbf{x}_N + w_0|$$

• Then, we can show that

$$\gamma \stackrel{\mathsf{def}}{=} \frac{|\boldsymbol{w}^T \boldsymbol{x}_N + w_0|}{\|\boldsymbol{w}\|_2} = \frac{\widetilde{\gamma}}{\|\boldsymbol{w}\|_2}.$$

Trick 1: Scaling

• So we can turn this optimization

maximize
$$\gamma$$
 subject to $y_j\left(\frac{{\boldsymbol w}^T{\boldsymbol x}_j+w_0}{\|{\boldsymbol w}\|_2}\right)\geq \gamma, \quad j=1,\ldots,N.$

into this optimization

• $1/\|\mathbf{w}\|_2$ goes to objective function!

Eliminate $\widetilde{\gamma}$

How about we turn this optimization

$$\label{eq:maximize} \begin{array}{ll} \underset{\boldsymbol{w},w_0}{\text{maximize}} & \frac{\widetilde{\gamma}}{\|\boldsymbol{w}\|_2} \\ \text{subject to } y_j(\boldsymbol{w}^T\boldsymbol{x}_j+w_0) \geq \widetilde{\gamma}, \quad j=1,\dots,N. \end{array}$$

• into this optimization?

$$\begin{array}{ll} \text{maximize} & \frac{1}{\|\frac{\mathbf{w}}{\widetilde{\gamma}}, \frac{\mathbf{w}_0}{\widetilde{\gamma}}} \\ \text{subject to} & y_j \left(\frac{\mathbf{w}}{\widetilde{\gamma}}^T \mathbf{x}_j + \frac{\mathbf{w}_0}{\widetilde{\gamma}} \right) \geq 1, \quad j = 1, \dots, N. \end{array}$$

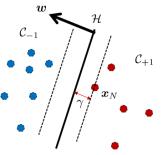
• You can refine the variables $m{w}\leftarrow rac{m{w}}{\widetilde{\gamma}}$ and $w_0\leftarrow rac{w_0}{\widetilde{\gamma}}$

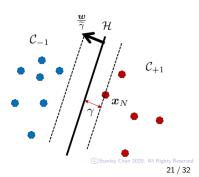
Eliminate $\widetilde{\gamma}$

• This gives you

maximize
$$\frac{1}{\|\mathbf{w}\|_2}$$
 subject to $y_j(\mathbf{w}^T\mathbf{x}_j + w_0) \ge 1, \quad j = 1, \dots, N.$

- So $\widetilde{\gamma}$ is eliminated!
- Geometrically: A scaling





Trick 2: Max to Min

You want to solve

$$\label{eq:maximize} \begin{array}{ll} \underset{\boldsymbol{w},w_0}{\text{maximize}} & \frac{1}{\|\boldsymbol{w}\|_2} \\ \text{subject to } y_j(\boldsymbol{w}^T\boldsymbol{x}_j+w_0) \geq 1, \quad j=1,\dots,N. \end{array}$$

How about

- This is a quadratic minimization with linear constraint.
- Convex.
- Solution is called a support vector machine.

Hand Crafted Example

You have four data points

$$\mathbf{x}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \mathbf{x}_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \ \mathbf{x}_3 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \ \mathbf{x}_4 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

Labels are

$$y_1 = -1, y_2 = -1, y_3 = +1, y_4 = +1.$$

- Weight vector $\mathbf{w} = (w_1, w_2)$ and off-set w_0 .
- The constraints are $y_j(\mathbf{w}^T\mathbf{x}_j + w_0) \geq 1$:

$$-w_0 \ge 1$$
 (i)
 $-(2w_1 + 2w_2 + w_0) \ge 1$ (ii)
 $2w_1 + w_0 \ge 1$ (iii)
 $3w_1 + w_0 \ge 1$ (iv)

- Combine (i) and (iii): $w_1 \ge 1$
- Combine (ii) and (iii): $w_2 \leq -1$

Hand Crafted Example

- Combine (i) and (iii): $w_1 \ge 1$
- Combine (ii) and (iii): $w_2 \le -1$
- Objective function is $\frac{1}{2} \| \mathbf{w} \|^2$.
- Can show that

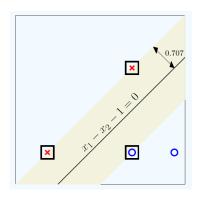
$$\frac{1}{2}\|\mathbf{w}\|^2 = \frac{1}{2}(w_1^2 + w_2^2) \ge 1.$$

Equality holds when

$$w_1^* = 1, \quad w_2^* = -1.$$

- So $(w_1^*, w_2^*) = (1, -1)$ is a minimizer of the objective.
- Can further show that $w_0^* = -1$.
- All constraints are satisfied at $(w_1^*, w_2^*, w_0^*) = (1, -1, -1)$.

Hand Crafted Example



Separating hyperplane:

$$h(\mathbf{x}) = \operatorname{sign}(x_1 - x_2 - 1)$$

Margin:

$$\frac{1}{\|\boldsymbol{w}^*\|_2} = \frac{1}{\sqrt{2}} = 0.707.$$

- Boxed data points: Meet the constraints (i), (ii) and (iii) with equality.
- These are the support vectors.

Writing Your SVM

• The problem is

This is a quadratic programming problem:

minimize
$$\frac{1}{2} \boldsymbol{u}^T \boldsymbol{Q} \boldsymbol{u} + \boldsymbol{p}^T \boldsymbol{u}$$
 subject to $\boldsymbol{A} \boldsymbol{u} \geq \boldsymbol{c}$

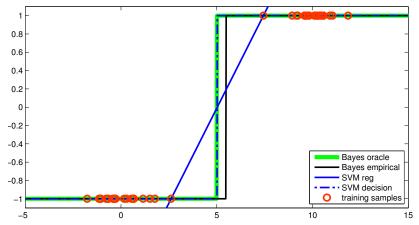
- Solution is $u^* = \mathsf{QP}(Q, p, A, c)$. Solvable using any QP solver.
- To us: This is convex objective with convex constraint.
- Use CVX! Below is a 1D example.

Writing Your SVM

```
mu0 = 0; mu1 = 10; sigma0 = 1; sigma1 = 1;
NO = 20; N1 = 20;
                          N = NO+N1:
x0 = random('normal',mu0,sigma0,N0,1);
x1 = random('normal', mu1, sigma1, N1, 1);
y0 = -ones(N0,1); y1 = ones(N1,1);
x = [x0; x1]; y = [y0; y1]; b = ones(N,1);
% Solve CVX
cvx_expert true
cvx_begin
   variables w w0
   minimize( sum_square(w) )
   subject to
       y.*(w*x + w0*ones(N,1)) - b >= 0
cvx_end
```

Comparing SVM and Bayesian Oracle

• $\mathcal{N}(0,1)$ with 20 samples and $\mathcal{N}(10,1)$ with 20 samples.



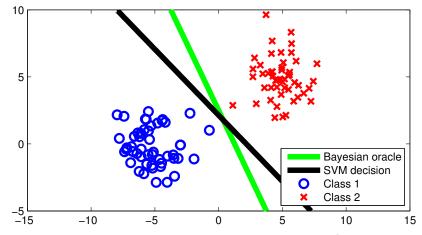
Classifier is always defined by the support vectors!

MATLAB Code for 2D SVM

```
mu0 = [-5; 0]; mu1 = [5; 5];
s = 1.5; Sigma = (s^2)*[1 0; 0 1];
NO = 50; N1 = 50; N = NO+N1;
x0 = mvnrnd(mu0,Sigma,N0);
x1 = mvnrnd(mu1,Sigma,N1);
x = [x0; x1];
y0 = -ones(N0,1); y1 = ones(N1,1); y = [y0; y1];
b = ones(N,1);
cvx_expert true
cvx_begin
   variables w(2) w0
   minimize( sum_square(w) )
   subject to
       v.*(x*w + ones(N,1)*w0) - b >= 0
cvx_end
```

SVM in 2D

- $\mu_1 = [-5, 0]^T$, $\mu_2 = [5, 5]^T$. $\Sigma = 1.5^2 I$.
- Class 1: 50 samples. Class 2: 50 samples.



Displaying Results

```
wstar = (mu1-mu0)/s^2:
w0star = -wstar'*((mu1+mu0)/2):
figure;
grid = linspace(-10,10,100);
hh{1} = plot( grid, (-w0star-wstar(1)*grid)/wstar(2), 'g', 'LineWidth', |5)
hh{2} = plot(grid, (-w0-w(1)*grid)/w(2), 'k', 'LineWidth', 5);
hh{3} = plot(x0(:,1),x0(:,2),'bo','LineWidth', 2, 'MarkerSize',8);
hh\{4\} = plot(x1(:,1),x1(:,2),'rx','LineWidth', 2, 'MarkerSize',8);
axis([-15 15 -5 10]):
legend([hh{1:4}], 'Bayesian oracle', 'SVM decision', 'Class 1', 'Class 2',
set(gcf, 'Position', [100, 100, 600, 300]);
```

- How to draw a line with (\mathbf{w}, w_0) ?
- $\mathbf{w}^T \mathbf{x} + w_0 = 0$ implies $w_1 x_1 + w_2 x_2 + w_0 = 0$.
- So $x_2 = -\frac{w_1}{w_2}x_1 \frac{w_0}{w_2}$.
- Sweep a range of x_1 to get x_2 .
- Make sure to configure the aspect ratio of your plot!

Reading List

Support Vector Machine

- Mustafa, Learning from Data, e-Chapter
- Duda-Hart-Stork, Pattern Classification, Chapter 5.5
- Chris Bishop, Pattern Recognition, Chapter 7.1
- UCSD Statistical Learning http://www.svcl.ucsd.edu/courses/ece271B-F09/