
c©Stanley Chan 2020. All Rights Reserved.

ECE595 / STAT598: Machine Learning I
Lecture 17 Perceptron 2: Algorithm and Property

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering
Purdue University

1 / 37

c©Stanley Chan 2020. All Rights Reserved.

Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier

2 / 37

c©Stanley Chan 2020. All Rights Reserved.

Outline

Discriminative Approaches

Lecture 16 Perceptron 1: Definition and Basic Concepts

Lecture 17 Perceptron 2: Algorithm and Property

Lecture 18 Multi-Layer Perceptron: Back Propagation

This lecture: Perceptron 2

Perceptron Algorithm
Loss Function
Algorithm

Optimality
Uniqueness
Batch and Online Mode

Convergence
Main Results
Implication

3 / 37

c©Stanley Chan 2020. All Rights Reserved.

Perceptron with Hard Loss

Historically, we have perceptron algorithm way earlier than CVX.

Before the age of CVX, people solve perceptron using gradient
descent.

Let us be explicit about which loss:

Jhard(θ) =
N∑
j=1

max
{
− yjhθ(x j), 0

}

Jsoft(θ) =
N∑
j=1

max
{
− yjgθ(x j), 0

}
Goal: To get a solution for Jhard(θ)

Approach: Gradient descent on Jsoft(θ)

4 / 37

c©Stanley Chan 2020. All Rights Reserved.

Re-defining the Loss

Main idea: Use the fact that

Jsoft(θ) =
N∑
j=1

max
{
− yjgθ(x j), 0

}
is the same as this loss function

J(θ) = −
∑

j∈M(θ)

yjgθ(x j).

M(θ) ⊆ {1, . . . ,N} is the set of misclassified samples.

Run gradient descent on J(θ), but fixing M(θ)←M(θk) for
iteration k.

5 / 37

c©Stanley Chan 2020. All Rights Reserved.

Equivalent Perceptron Loss

We want to show that the perceptron loss function is equivalent to

N∑
j=1

max
{
− yjgθ(x j), 0

}
︸ ︷︷ ︸

Jsoft(θ)

= −
∑

j∈M(θ)

yjgθ(x j)︸ ︷︷ ︸
J(θ)

If x j is misclassified (j ∈M(θ))

then by definition of M(θ) we have sign {gθ(x j)} 6= yj
So −yjgθ(x j) > 0
Therefore, max{−yjgθ(x j), 0} = −yjgθ(x j).

If x j is correctly classified (j 6∈ M(θ))

then by definition of M(θ) we have sign {gθ(x j)} = yj
So −yjgθ(x j) < 0
Therefore, max{−yjgθ(x j), 0} = 0.

6 / 37

c©Stanley Chan 2020. All Rights Reserved.

Equivalent Perceptron Loss

Therefore, we conclude that

M(θ) = {j | yjgθ(x j) < 0}

and

Jsoft(θ) =
∑

j∈M(θ)

max
{
− yjgθ(x j), 0

}
+

∑
j 6∈M(θ)

max
{
− yjgθ(x j), 0

}
=

∑
j∈M(θ)

−yjgθ(x j) +
∑

j 6∈M(θ)

0

=
∑

j∈M(θ)

−yjgθ(x j) = J(θ).

Minimizing J(θ) is less obvious because M(θ) depends on θ.

But it gives a very easy algorithm.

7 / 37

c©Stanley Chan 2020. All Rights Reserved.

Equivalent Perceptron Loss

Therefore, we conclude that

M(θ) = {j | yjgθ(x j) < 0}

and

Jsoft(θ) =
∑

j∈M(θ)

max
{
− yjgθ(x j), 0

}
+

∑
j 6∈M(θ)

max
{
− yjgθ(x j), 0

}
=

∑
j∈M(θ)

−yjgθ(x j) +
∑

j 6∈M(θ)

0

=
∑

j∈M(θ)

−yjgθ(x j) = J(θ).

Minimizing J(θ) is less obvious because M(θ) depends on θ.

But it gives a very easy algorithm.

7 / 37

c©Stanley Chan 2020. All Rights Reserved.

Equivalent Perceptron Loss

Therefore, we conclude that

M(θ) = {j | yjgθ(x j) < 0}

and

Jsoft(θ) =
∑

j∈M(θ)

max
{
− yjgθ(x j), 0

}
+

∑
j 6∈M(θ)

max
{
− yjgθ(x j), 0

}
=

∑
j∈M(θ)

−yjgθ(x j) +
∑

j 6∈M(θ)

0

=
∑

j∈M(θ)

−yjgθ(x j) = J(θ).

Minimizing J(θ) is less obvious because M(θ) depends on θ.

But it gives a very easy algorithm.

7 / 37

c©Stanley Chan 2020. All Rights Reserved.

Equivalent Perceptron Loss

Therefore, we conclude that

M(θ) = {j | yjgθ(x j) < 0}

and

Jsoft(θ) =
∑

j∈M(θ)

max
{
− yjgθ(x j), 0

}
+

∑
j 6∈M(θ)

max
{
− yjgθ(x j), 0

}
=

∑
j∈M(θ)

−yjgθ(x j) +
∑

j 6∈M(θ)

0

=
∑

j∈M(θ)

−yjgθ(x j) = J(θ).

Minimizing J(θ) is less obvious because M(θ) depends on θ.

But it gives a very easy algorithm.

7 / 37

c©Stanley Chan 2020. All Rights Reserved.

Equivalent Perceptron Loss

Therefore, we conclude that

M(θ) = {j | yjgθ(x j) < 0}

and

Jsoft(θ) =
∑

j∈M(θ)

max
{
− yjgθ(x j), 0

}
+

∑
j 6∈M(θ)

max
{
− yjgθ(x j), 0

}
=

∑
j∈M(θ)

−yjgθ(x j) +
∑

j 6∈M(θ)

0

=
∑

j∈M(θ)

−yjgθ(x j) = J(θ).

Minimizing J(θ) is less obvious because M(θ) depends on θ.

But it gives a very easy algorithm.

7 / 37

c©Stanley Chan 2020. All Rights Reserved.

Equivalent Perceptron Loss

Therefore, we conclude that

M(θ) = {j | yjgθ(x j) < 0}

and

Jsoft(θ) =
∑

j∈M(θ)

max
{
− yjgθ(x j), 0

}
+

∑
j 6∈M(θ)

max
{
− yjgθ(x j), 0

}
=

∑
j∈M(θ)

−yjgθ(x j) +
∑

j 6∈M(θ)

0

=
∑

j∈M(θ)

−yjgθ(x j) = J(θ).

Minimizing J(θ) is less obvious because M(θ) depends on θ.

But it gives a very easy algorithm.

7 / 37

c©Stanley Chan 2020. All Rights Reserved.

Equivalent Perceptron Loss

Therefore, we conclude that

M(θ) = {j | yjgθ(x j) < 0}

and

Jsoft(θ) =
∑

j∈M(θ)

max
{
− yjgθ(x j), 0

}
+

∑
j 6∈M(θ)

max
{
− yjgθ(x j), 0

}
=

∑
j∈M(θ)

−yjgθ(x j) +
∑

j 6∈M(θ)

0

=
∑

j∈M(θ)

−yjgθ(x j) = J(θ).

Minimizing J(θ) is less obvious because M(θ) depends on θ.

But it gives a very easy algorithm.

7 / 37

c©Stanley Chan 2020. All Rights Reserved.

Perceptron Algorithm

The loss is
J(θ) = −

∑
j∈M(θ)

yjgθ(x j),

At iteration k , fix Mk =M(θ(k))

Then, update via gradient descent

θ(k+1) = θ(k) − αk∇θJ(θ(k))

= θ(k) − αk

∑
j∈Mk

∇θ

(
− yjgθ(x j)

)
.

8 / 37

c©Stanley Chan 2020. All Rights Reserved.

Perceptron Algorithm

We can show that

∇θ

(
− yjgθ(x j)

)
=

{
−yj∇θ

(
w

T
x j + w0

)
,

0, ,

=

= −yj

[
x j

1

]
if j ∈Mk ,

0, if j 6∈ Mk .

Thus, the update is[
w

(k+1)

w
(k+1)
0

]
=

[
w

(k)

w
(k)
0

]
+ αk

∑
j∈Mk

[
yjx j
yj

]
.

9 / 37

c©Stanley Chan 2020. All Rights Reserved.

Perceptron Algorithm

The algorithm is

For k = 1, 2, . . . ,

Update Mk = {j | yjgθ(x j) < 0} for θ = θ(k).

Gradient descent[
w

(k+1)

w
(k+1)
0

]
=

[
w

(k)

w
(k)
0

]
+ αk

∑
j∈Mk

[
yjx j
yj

]
.

End For

The set Mk can grow or can shrink from Mk−1.

If training samples are linearly separable, then converge. Zero training
loss.

If training samples are not linearly separable, then oscillates.

10 / 37

c©Stanley Chan 2020. All Rights Reserved.

Updating One Sample

11 / 37

c©Stanley Chan 2020. All Rights Reserved.

Outline

Discriminative Approaches

Lecture 16 Perceptron 1: Definition and Basic Concepts

Lecture 17 Perceptron 2: Algorithm and Property

Lecture 18 Multi-Layer Perceptron: Back Propagation

This lecture: Perceptron 2

Perceptron Algorithm
Loss Function
Algorithm

Optimality
Uniqueness
Batch and Online Mode

Convergence
Main Results
Implication

12 / 37

c©Stanley Chan 2020. All Rights Reserved.

Non-uniqueness of Global Minimizer

13 / 37

c©Stanley Chan 2020. All Rights Reserved.

Optimality of Perceptron Algorithm

Let perceptron algorithm output

θ∗perceptron = Perceptron Algorithm({x1, . . . , xN}).

Let ideal solution

θ∗hard = argmin
θ

Jhard(θ).

That means
Jhard(θ∗hard) ≤ Jhard(θ), ∀θ.

If the two classes are linearly separable, then θ∗perceptron is a global
minimizer:

Jhard(θ∗perceptron) ≤ Jhard(θ), ∀θ.

and
Jhard(θ∗perceptron) = Jhard(θ∗hard) = 0.

14 / 37

c©Stanley Chan 2020. All Rights Reserved.

Uniqueness of Perceptron Solution

If θ∗ minimizes Jhard(θ∗), then αθ∗ for some constant α > 0 also
minimizes Jhard(θ∗).

This is because

gαθ(x) = (αw)Tx + (αw0)

= α(wT
x + w0).

If gθ(x) > 0, then gαθ(x) > 0. So if hθ(x) = +1, then hαθ(x) = +1.

If gθ(x) < 0, then gαθ(x) < 0. So if hθ(x) = −1, then hαθ(x) = −1.

The sign of wT
x + w0 is unchanged as long as α > 0.

Jhard(θ∗) =
N∑
j=1

max
{
− yjhθ∗(x j), 0

}

=
N∑
j=1

max
{
− yjhαθ∗(x j), 0

}
= Jhard(αθ∗)

15 / 37

c©Stanley Chan 2020. All Rights Reserved.

Factors for Uniqueness

Initialization

Start at a different location, end on a different location

You still converge, but no longer unique solution

Mk changes

16 / 37

c©Stanley Chan 2020. All Rights Reserved.

Factors for Uniqueness

Step Size

Too large step: oscillate

Too small step: slow movement

Terminates as long as no misclassification

17 / 37

c©Stanley Chan 2020. All Rights Reserved.

Batch vs Online Mode

Batch mode [
w

(k+1)

w
(k+1)
0

]
=

[
w

(k)

w
(k)
0

]
+ αk

∑
j∈Mk

[
yjx j
yj

]
.

Update via the average of misclassified samples

Online mode [
w

(k+1)

w
(k+1)
0

]
=

[
w

(k)

w
(k)
0

]
+ αk

[
yjx j
yj

]
,

Update via a single misclassified sample

j is a sample randomly picked from Mk .

Stochastic gradient descent.

18 / 37

c©Stanley Chan 2020. All Rights Reserved.

Online Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

19 / 37

c©Stanley Chan 2020. All Rights Reserved.

Online Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

19 / 37

c©Stanley Chan 2020. All Rights Reserved.

Online Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

19 / 37

c©Stanley Chan 2020. All Rights Reserved.

Online Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

19 / 37

c©Stanley Chan 2020. All Rights Reserved.

Online Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

19 / 37

c©Stanley Chan 2020. All Rights Reserved.

Online Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

19 / 37

c©Stanley Chan 2020. All Rights Reserved.

Online Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

19 / 37

c©Stanley Chan 2020. All Rights Reserved.

Online Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

19 / 37

c©Stanley Chan 2020. All Rights Reserved.

Batch Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

20 / 37

c©Stanley Chan 2020. All Rights Reserved.

Batch Mode

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

20 / 37

c©Stanley Chan 2020. All Rights Reserved.

Step Size

Batch mode: Step size too large.

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

21 / 37

c©Stanley Chan 2020. All Rights Reserved.

Step Size

Batch mode: Step size too large.

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

21 / 37

c©Stanley Chan 2020. All Rights Reserved.

Step Size

Batch mode: Step size too large.

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

21 / 37

c©Stanley Chan 2020. All Rights Reserved.

Step Size

Batch mode: Step size too large.

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

21 / 37

c©Stanley Chan 2020. All Rights Reserved.

Step Size

Batch mode: Step size too large.

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

21 / 37

c©Stanley Chan 2020. All Rights Reserved.

Step Size

Batch mode: Step size too large.

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

21 / 37

c©Stanley Chan 2020. All Rights Reserved.

Step Size

Batch mode: Step size too large.

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

21 / 37

c©Stanley Chan 2020. All Rights Reserved.

Step Size

Batch mode: Step size too large.

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

21 / 37

c©Stanley Chan 2020. All Rights Reserved.

Linearly Not Separable

No separating hyperplane

CVX will still find you a solution

But loss is no longer zero

Perceptron algorithm will not converge

22 / 37

c©Stanley Chan 2020. All Rights Reserved.

Linearly Not Separable

If the two classes are overlapping

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

23 / 37

c©Stanley Chan 2020. All Rights Reserved.

Linearly Not Separable

If the two classes are overlapping

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

23 / 37

c©Stanley Chan 2020. All Rights Reserved.

Linearly Not Separable

If the two classes are overlapping

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

23 / 37

c©Stanley Chan 2020. All Rights Reserved.

Linearly Not Separable

If the two classes are overlapping

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

23 / 37

c©Stanley Chan 2020. All Rights Reserved.

Linearly Not Separable

If the two classes are overlapping

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

23 / 37

c©Stanley Chan 2020. All Rights Reserved.

Linearly Not Separable

If the two classes are overlapping

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

23 / 37

c©Stanley Chan 2020. All Rights Reserved.

Linearly Not Separable

If the two classes are overlapping

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

perceptron CVX

perceptron CVX decision

perceptron gradient

perceptron gradient decision

training sample

23 / 37

c©Stanley Chan 2020. All Rights Reserved.

Outline

Discriminative Approaches

Lecture 16 Perceptron 1: Definition and Basic Concepts

Lecture 17 Perceptron 2: Algorithm and Property

Lecture 18 Multi-Layer Perceptron: Back Propagation

This lecture: Perceptron 2

Perceptron Algorithm
Loss Function
Algorithm

Optimality
Uniqueness
Batch and Online Mode

Convergence
Main Results
Implication

24 / 37

c©Stanley Chan 2020. All Rights Reserved.

Convergence of Perceptron Algorithm

Theorem. Assume the following things:

The two classes are linearly separable

This means: (θ∗)T (yjx j) = yj((w∗)Tx j + w∗0) ≥ γ for some γ > 0

‖x j‖2 ≤ R for some constant

Initialize θ(0) = 0

Then, batch mode perceptron algorithm converges to the true solution θ∗

‖θ(k+1) − θ∗‖2 = 0,

when the number of iterations k exceeds

k ≥ ‖θ
∗‖2R2

γ2
.

25 / 37

c©Stanley Chan 2020. All Rights Reserved.

Interpreting the Perceptron Convergence

Theorem. Assume the following things:

The two classes are linearly separable
This means: (θ∗)T (yjx j) = yj((w∗)Tx j + w∗0)≥ γ for some γ > 0
‖x j‖2 ≤ R for some constant

Initialize θ(0) = 0

Comment.

γ is the margin
θ∗ is ONE solution such that the margin is at least γ

26 / 37

c©Stanley Chan 2020. All Rights Reserved.

Interpreting the Perceptron Convergence

Theorem. Assume the following things:

The two classes are linearly separable
This means: (θ∗)T (yjx j) = yj((w∗)Tx j + w∗0)≥ γ for some γ > 0
‖x j‖2 ≤ R for some constant

Initialize θ(0) = 0

Comment.

If you do not initialize at 0, still converge.
The solution θ∗ might be different.

27 / 37

c©Stanley Chan 2020. All Rights Reserved.

Interpreting the Perceptron Convergence

Then, batch mode perceptron algorithm converges to the true solution θ∗

‖θ(k+1) − θ∗‖2 = 0

when the number of iterations k exceeds

k ≥ ‖θ
∗‖2R2

γ2
.

Comment:

You can turn batch mode to online mode by picking only one j ∈Mk

You will do slower, but you can still converge

θ∗ is the converging point of this particular sequence {θ1,θ2, . . .θ∞}
Not an arbitrary separating hyperplane

28 / 37

c©Stanley Chan 2020. All Rights Reserved.

Interpreting the Perceptron Convergence

Then, batch mode perceptron algorithm converges to the true solution θ∗

‖θ(k+1) − θ∗‖2 = 0,

when the number of iterations k exceeds

k ≥ ‖θ
∗‖2R2

γ2
.

Comment:

R controls the radius of the class.

Large R: Wide spread. Difficult. Need large k .

γ controls the margin.

Large γ: Big margin. Easy. Need small k .

29 / 37

c©Stanley Chan 2020. All Rights Reserved.

Summary of the Convergence Theorem

Algorithm: You use gradient descent on Jsoft(θ)

Solution: You get a global minimizer for Jhard(θ)

But this is just one of the many global minimizers

Assumption: Linearly separable

If not linearly separable, then will oscillate

Margin: At optimal solution there is a margin because separable

Applications: Not quite; There are many better methods

Theoretical usage: Good for analyzing linear models. Very simple
algorithm.

30 / 37

c©Stanley Chan 2020. All Rights Reserved.

Reading List

Perceptron Algorithm

Abu-Mostafa, Learning from Data, Chapter 1.2

Duda, Hart, Stork, Pattern Classification, Chapter 5.5

Cornell CS 4780 Lecture https://www.cs.cornell.edu/courses/

cs4780/2018fa/lectures/lecturenote03.html

UCSD ECE 271B Lecture http://www.svcl.ucsd.edu/courses/

ece271B-F09/handouts/perceptron.pdf

31 / 37

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html
http://www.svcl.ucsd.edu/courses/ece271B-F09/handouts/perceptron.pdf
http://www.svcl.ucsd.edu/courses/ece271B-F09/handouts/perceptron.pdf

c©Stanley Chan 2020. All Rights Reserved.

Appendix

32 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 1

Define
x
(k) =

∑
j∈Mk

yjx j .

Let θ∗ be the minimizer. Then,

‖θ(k+1) − θ∗‖2 = ‖θ(k) + αkx
(k) − θ∗‖2

= ‖(θ(k) − θ∗) + αkx
(k)‖2

= ‖θ(k) − θ∗‖2 + 2αk(θ(k) − θ∗)Tx (k) + α2
k‖x (k)‖2

= ‖θ(k) − θ∗‖2 + 2αk

(
θ(k) − θ∗

)T ∑
j∈Mk

yjx j


+ α2

k

∥∥∥∥∥∥
∑
j∈Mk

yjx j

∥∥∥∥∥∥
2

.

33 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 2

By construction, θ(k) updates only the misclassified samples (during
the k-th iteration)

So for any j ∈Mk we must have (θ(k))T (yjx j) ≤ 0.

This implies that

(θ(k))Tx (k) =
∑
j∈Mk

(θ(k))T yjx j ≤ 0.

Therefore, we can show that

‖θ(k+1) − θ∗‖2

≤ ‖θ(k) − θ∗‖2 + 2αk

(
θ(k) − θ∗

)T
x
(k) + α2

k‖x (k)‖2

= ‖θ(k) − θ∗‖2 +
���������
2αk

(
θ(k)

)T
x
(k) − 2αk (θ∗)T x (k) + α2

k‖x (k)‖2

≤ ‖θ(k) − θ∗‖2 − 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2.

34 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 2

By construction, θ(k) updates only the misclassified samples (during
the k-th iteration)

So for any j ∈Mk we must have (θ(k))T (yjx j) ≤ 0.

This implies that

(θ(k))Tx (k) =
∑
j∈Mk

(θ(k))T yjx j ≤ 0.

Therefore, we can show that

‖θ(k+1) − θ∗‖2

≤ ‖θ(k) − θ∗‖2 + 2αk

(
θ(k) − θ∗

)T
x
(k) + α2

k‖x (k)‖2

= ‖θ(k) − θ∗‖2 +
���������
2αk

(
θ(k)

)T
x
(k) − 2αk (θ∗)T x (k) + α2

k‖x (k)‖2

≤ ‖θ(k) − θ∗‖2 − 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2.

34 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 2

By construction, θ(k) updates only the misclassified samples (during
the k-th iteration)

So for any j ∈Mk we must have (θ(k))T (yjx j) ≤ 0.

This implies that

(θ(k))Tx (k) =
∑
j∈Mk

(θ(k))T yjx j ≤ 0.

Therefore, we can show that

‖θ(k+1) − θ∗‖2

≤ ‖θ(k) − θ∗‖2 + 2αk

(
θ(k) − θ∗

)T
x
(k) + α2

k‖x (k)‖2

= ‖θ(k) − θ∗‖2 +
���������
2αk

(
θ(k)

)T
x
(k) − 2αk (θ∗)T x (k) + α2

k‖x (k)‖2

≤ ‖θ(k) − θ∗‖2 − 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2.

34 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 2

By construction, θ(k) updates only the misclassified samples (during
the k-th iteration)

So for any j ∈Mk we must have (θ(k))T (yjx j) ≤ 0.

This implies that

(θ(k))Tx (k) =
∑
j∈Mk

(θ(k))T yjx j ≤ 0.

Therefore, we can show that

‖θ(k+1) − θ∗‖2

≤ ‖θ(k) − θ∗‖2 + 2αk

(
θ(k) − θ∗

)T
x
(k) + α2

k‖x (k)‖2

= ‖θ(k) − θ∗‖2 +
���������
2αk

(
θ(k)

)T
x
(k) − 2αk (θ∗)T x (k) + α2

k‖x (k)‖2

≤ ‖θ(k) − θ∗‖2 − 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2.

34 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 2

By construction, θ(k) updates only the misclassified samples (during
the k-th iteration)

So for any j ∈Mk we must have (θ(k))T (yjx j) ≤ 0.

This implies that

(θ(k))Tx (k) =
∑
j∈Mk

(θ(k))T yjx j ≤ 0.

Therefore, we can show that

‖θ(k+1) − θ∗‖2

≤ ‖θ(k) − θ∗‖2 + 2αk

(
θ(k) − θ∗

)T
x
(k) + α2

k‖x (k)‖2

= ‖θ(k) − θ∗‖2 +
���������
2αk

(
θ(k)

)T
x
(k) − 2αk (θ∗)T x (k) + α2

k‖x (k)‖2

≤ ‖θ(k) − θ∗‖2 − 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2.

34 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 3

So we have

‖θ(k+1) − θ∗‖2 ≤ ‖θ(k) − θ∗‖2−2αk(θ∗)Tx (k) + α2
k‖x (k)‖2.︸ ︷︷ ︸

The sum of the last two terms is

−2αk(θ∗)Tx (k) + α2
k‖x (k)‖2 = αk

(
−2(θ∗)Tx (k) + αk‖x (k)‖2

)
,

Negative if and only if αk <
2(θ∗)T x (k)

‖x (k)‖2

Thus, we choose

αk =
(θ∗)Tx (k)

‖x (k)‖2
,

35 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 4

Then, we can have

− 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2 = −2αk(θ∗)Tx (k) + α2

k‖x (k)‖2

= −

(
(θ∗)Tx (k)

)2
‖x (k)‖2

.

By assumption ‖x j‖2 ≤ R for any j , and yj(θ
∗)Tx j ≥ γ for any j

So (
(θ∗)Tx (k)

)2
‖x (k)‖2

=

(∑
j∈Mk

yj(θ
∗)Tx j

)2∑
j∈Mk

‖x j‖2

≥

(∑
j∈Mk

γ
)2∑

j∈Mk
R2

= |Mk |
γ2

R2

36 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 4

Then, we can have

− 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2 = −2αk(θ∗)Tx (k) + α2

k‖x (k)‖2

= −

(
(θ∗)Tx (k)

)2
‖x (k)‖2

.

By assumption ‖x j‖2 ≤ R for any j , and yj(θ
∗)Tx j ≥ γ for any j

So (
(θ∗)Tx (k)

)2
‖x (k)‖2

=

(∑
j∈Mk

yj(θ
∗)Tx j

)2∑
j∈Mk

‖x j‖2

≥

(∑
j∈Mk

γ
)2∑

j∈Mk
R2

= |Mk |
γ2

R2

36 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 4

Then, we can have

− 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2 = −2αk(θ∗)Tx (k) + α2

k‖x (k)‖2

= −

(
(θ∗)Tx (k)

)2
‖x (k)‖2

.

By assumption ‖x j‖2 ≤ R for any j , and yj(θ
∗)Tx j ≥ γ for any j

So (
(θ∗)Tx (k)

)2
‖x (k)‖2

=

(∑
j∈Mk

yj(θ
∗)Tx j

)2∑
j∈Mk

‖x j‖2

≥

(∑
j∈Mk

γ
)2∑

j∈Mk
R2

= |Mk |
γ2

R2

36 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 4

Then, we can have

− 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2 = −2αk(θ∗)Tx (k) + α2

k‖x (k)‖2

= −

(
(θ∗)Tx (k)

)2
‖x (k)‖2

.

By assumption ‖x j‖2 ≤ R for any j , and yj(θ
∗)Tx j ≥ γ for any j

So (
(θ∗)Tx (k)

)2
‖x (k)‖2

=

(∑
j∈Mk

yj(θ
∗)Tx j

)2∑
j∈Mk

‖x j‖2

≥

(∑
j∈Mk

γ
)2∑

j∈Mk
R2

= |Mk |
γ2

R2

36 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 4

Then, we can have

− 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2 = −2αk(θ∗)Tx (k) + α2

k‖x (k)‖2

= −

(
(θ∗)Tx (k)

)2
‖x (k)‖2

.

By assumption ‖x j‖2 ≤ R for any j , and yj(θ
∗)Tx j ≥ γ for any j

So (
(θ∗)Tx (k)

)2
‖x (k)‖2

=

(∑
j∈Mk

yj(θ
∗)Tx j

)2∑
j∈Mk

‖x j‖2

≥

(∑
j∈Mk

γ
)2∑

j∈Mk
R2

= |Mk |
γ2

R2

36 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 4

Then, we can have

− 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2 = −2αk(θ∗)Tx (k) + α2

k‖x (k)‖2

= −

(
(θ∗)Tx (k)

)2
‖x (k)‖2

.

By assumption ‖x j‖2 ≤ R for any j , and yj(θ
∗)Tx j ≥ γ for any j

So (
(θ∗)Tx (k)

)2
‖x (k)‖2

=

(∑
j∈Mk

yj(θ
∗)Tx j

)2∑
j∈Mk

‖x j‖2

≥

(∑
j∈Mk

γ
)2∑

j∈Mk
R2

= |Mk |
γ2

R2

36 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 4

Then, we can have

− 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2 = −2αk(θ∗)Tx (k) + α2

k‖x (k)‖2

= −

(
(θ∗)Tx (k)

)2
‖x (k)‖2

.

By assumption ‖x j‖2 ≤ R for any j , and yj(θ
∗)Tx j ≥ γ for any j

So (
(θ∗)Tx (k)

)2
‖x (k)‖2

=

(∑
j∈Mk

yj(θ
∗)Tx j

)2∑
j∈Mk

‖x j‖2

≥

(∑
j∈Mk

γ
)2∑

j∈Mk
R2

= |Mk |
γ2

R2

36 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 4

Then, we can have

− 2αk(θ∗)Tx (k) + α2
k‖x (k)‖2 = −2αk(θ∗)Tx (k) + α2

k‖x (k)‖2

= −

(
(θ∗)Tx (k)

)2
‖x (k)‖2

.

By assumption ‖x j‖2 ≤ R for any j , and yj(θ
∗)Tx j ≥ γ for any j

So (
(θ∗)Tx (k)

)2
‖x (k)‖2

=

(∑
j∈Mk

yj(θ
∗)Tx j

)2∑
j∈Mk

‖x j‖2

≥

(∑
j∈Mk

γ
)2∑

j∈Mk
R2

= |Mk |
γ2

R2

36 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 5

Then by induction we can show that

‖θ(k+1) − θ∗‖2 < ‖θ(0) − θ∗‖2 −
k∑

i=1

|Mi |
γ2

R2
.

We can conclude that

k∑
i=1

|Mi |
γ2

R2
< ‖θ(0) − θ∗‖2 = ‖θ∗‖2,

Therefore,

k∑
i=1

|Mi |︸ ︷︷ ︸
k≤(·)

<
‖θ∗‖2R2

γ2

=
maxj ‖θ∗‖2‖x j‖2

(minj(θ
∗)Tx j)

2

37 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 5

Then by induction we can show that

‖θ(k+1) − θ∗‖2 < ‖θ(0) − θ∗‖2 −
k∑

i=1

|Mi |
γ2

R2
.

We can conclude that

k∑
i=1

|Mi |
γ2

R2
< ‖θ(0) − θ∗‖2 = ‖θ∗‖2,

Therefore,

k∑
i=1

|Mi |︸ ︷︷ ︸
k≤(·)

<
‖θ∗‖2R2

γ2

=
maxj ‖θ∗‖2‖x j‖2

(minj(θ
∗)Tx j)

2

37 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 5

Then by induction we can show that

‖θ(k+1) − θ∗‖2 < ‖θ(0) − θ∗‖2 −
k∑

i=1

|Mi |
γ2

R2
.

We can conclude that

k∑
i=1

|Mi |
γ2

R2
< ‖θ(0) − θ∗‖2 = ‖θ∗‖2,

Therefore,

k∑
i=1

|Mi |︸ ︷︷ ︸
k≤(·)

<
‖θ∗‖2R2

γ2

=
maxj ‖θ∗‖2‖x j‖2

(minj(θ
∗)Tx j)

2

37 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 5

Then by induction we can show that

‖θ(k+1) − θ∗‖2 < ‖θ(0) − θ∗‖2 −
k∑

i=1

|Mi |
γ2

R2
.

We can conclude that

k∑
i=1

|Mi |
γ2

R2
< ‖θ(0) − θ∗‖2 = ‖θ∗‖2,

Therefore,

k∑
i=1

|Mi |︸ ︷︷ ︸
k≤(·)

<
‖θ∗‖2R2

γ2

=
maxj ‖θ∗‖2‖x j‖2

(minj(θ
∗)Tx j)

2

37 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 5

Then by induction we can show that

‖θ(k+1) − θ∗‖2 < ‖θ(0) − θ∗‖2 −
k∑

i=1

|Mi |
γ2

R2
.

We can conclude that

k∑
i=1

|Mi |
γ2

R2
< ‖θ(0) − θ∗‖2 = ‖θ∗‖2,

Therefore,

k∑
i=1

|Mi |︸ ︷︷ ︸
k≤(·)

<
‖θ∗‖2R2

γ2

=
maxj ‖θ∗‖2‖x j‖2

(minj(θ
∗)Tx j)

2

37 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 5

Then by induction we can show that

‖θ(k+1) − θ∗‖2 < ‖θ(0) − θ∗‖2 −
k∑

i=1

|Mi |
γ2

R2
.

We can conclude that

k∑
i=1

|Mi |
γ2

R2
< ‖θ(0) − θ∗‖2 = ‖θ∗‖2,

Therefore,

k∑
i=1

|Mi |︸ ︷︷ ︸
k≤(·)

<
‖θ∗‖2R2

γ2

=
maxj ‖θ∗‖2‖x j‖2

(minj(θ
∗)Tx j)

2

37 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 5

Then by induction we can show that

‖θ(k+1) − θ∗‖2 < ‖θ(0) − θ∗‖2 −
k∑

i=1

|Mi |
γ2

R2
.

We can conclude that

k∑
i=1

|Mi |
γ2

R2
< ‖θ(0) − θ∗‖2 = ‖θ∗‖2,

Therefore,

k∑
i=1

|Mi |︸ ︷︷ ︸
k≤(·)

<
‖θ∗‖2R2

γ2

=
maxj ‖θ∗‖2‖x j‖2

(minj(θ
∗)Tx j)

2

37 / 37

c©Stanley Chan 2020. All Rights Reserved.

Proof Part 5

Then by induction we can show that

‖θ(k+1) − θ∗‖2 < ‖θ(0) − θ∗‖2 −
k∑

i=1

|Mi |
γ2

R2
.

We can conclude that

k∑
i=1

|Mi |
γ2

R2
< ‖θ(0) − θ∗‖2 = ‖θ∗‖2,

Therefore,

k∑
i=1

|Mi |︸ ︷︷ ︸
k≤(·)

<
‖θ∗‖2R2

γ2
=

maxj ‖θ∗‖2‖x j‖2

(minj(θ
∗)Tx j)

2

37 / 37

