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@ In linear discriminant analysis (LDA), there are generally two types of
approaches
o Generative approach: Estimate model, then define the classifier

o Discriminative approach: Directly define the classifier
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Discriminative Approaches
@ Lecture 16 Perceptron 1: Definition and Basic Concepts

@ Lecture 17 Perceptron 2: Algorithm and Property

This lecture: Perceptron 1

@ From Logistic to Perceptron
e What is Perceptron? Why study it?
o Perceptron Loss
e Connection with other losses

@ Properties of Perceptron Loss
e Convexity
e Comparing with Bayesian Oracle
e Preview of Perceptron Algorithm
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Perceptron as a Single-Layer Network
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o Logistic regression: Soft threshold

@ Perceptron: Hard threshold
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From Logistic to Perceptron

@ Logistic regression
1

= 1+ e—a(x—xo)'

h(x)

e Make a — oo, then h(x) — step function

a||—>nc1>o h(x) = allglo 1 4 e—alx—x)

= sign(a(x — xp)).
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From Logistic to Perceptron

@ Linear regression
ho(x) = sign(w " x + wp).

e Stage 1: Training the discriminant function
go(x) =w'x + wp.
e Stage 2: Threshold to make decision
ho(x) = sign(go(x))-
@ Logistic regression

1
T 14 e WTxtwo)

ho(x)

@ Perceptron algorithm

ho(x) = sign(w " x + wyp).
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How to Define Perceptron Loss Function

@ Logistic regression
N
J(6) = Z —{y,, log he(xn) + (1 — yn) log(1 — hg(x,,))}
n=1

o Okay if hg(x,) is soft-decision.
o Not okay if hg(x,) is binary: Either all fit or none fit.

o “Candidate” perceptron loss function
N
J(0) = Z max{ — ynhe(xn), 0}.
n=1

e Does not have the log-term
o Will not run into o0

7/32



Understanding the Perceptron Loss function

@ “Candidate” perceptron loss function

hard(0) = EN: max{ — y,,hg(x,,),O}.
n=1

o ho(x,) = sign(w'x, + wp) is either +1 or -1.
@ If the decision is correct, then must have

o ho(x,)=+1and y, = +1

o hg(x)=—-1and y,=—1

o In both cases, y,he(x,) = +1

o So the loss is max{—ynhe(x,),0} = 0.
o If the decision is wrong, then must have

o ho(x,)=+41land y,=-1

o he(x,)=-1and y, =+1

o In both cases, y,he(x,) = —1

e So the loss is max{—y,he(x,),0} =1
e J(0) is not differentiable in 6.
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Perceptron Loss function

@ Define the perceptron loss as

Jsot (0) = ZN: max{ — Yn80(Xn), 0}.
n=1

® go(x,) = w'x, + wp is either +ve or -ve.
@ If the decision is correct, then must have
go(xn) >0and y, = +1

go(x) <0and y,=—1

In both cases, y,go(x,) >0

So the loss is max{—y,go(x,),0} = 0.

o If the decision is wrong, then must have
gG(Xn) > 0 and Yn=-1

go(x,) <0andy,=+1

In both cases, y,go(x,) <0

So the loss is max{—y,go(x,),0} > 0.
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Comparing the loss function

o Linear regression
N
o J(6) =" ,1(go(xn) — ¥n)?
o Convex, closed-form solution
e Usually: Unique global minimizer
o Logistic regression

o J(0) = X0 —~{ylog ho(xa) + (1 ya) log(1 — ho(x)) }
o Convex, no closed-form solution
e Usually: Unique global minimizer

e Perceptron (Hard)

o dhara(8) = Xy max { — yuho(xs), 0}
o Not convex, no closed-form solution
o Usually: Many global minimizers

o Perceptron (Soft)

o Juore(6) = Loy max { — yago(x,), 0}
o Convex, no closed-form solution
e Usually: Unique global minimizer
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Comparing the loss function

Ja) J(a)

Nice gradient
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https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture5.pdf
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]
Perceptron Loss, Hinge Loss and RelLU

f(s) = max(—s,0) f(s) = rflax(s, 0)

Perceptron Loss Rectified Linear Unit

@ The function f(s) = max(—s,0) is called the perceptron loss
@ A variant max(1 — s,0) is called Hinge Loss

@ Another variant max(s,0) is called ReLU

e We can prove that the gradient of f(s) = max(—x"s,0) is

—X, if x's<0,

Vsmax(—x"s,0) =
smax(—x"s,0) {0, if xTs>0.
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Comparing Loss functions

Ly =1,1lx)
B

Zero-one loss
Hinge loss
Perceptron loss
Log loss

Squared hinge loss
Modified Huber loss

https://scikit-learn.
functions.html
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Decision function fix)

org/dev/auto_examples/linear_model/plot_sgd_loss_
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Discriminative Approaches
@ Lecture 16 Perceptron 1: Definition and Basic Concepts

@ Lecture 17 Perceptron 2: Algorithm and Property

This lecture: Perceptron 1

@ From Logistic to Perceptron
e What is Perceptron? Why study it?
o Perceptron Loss
e Connection with other losses

@ Properties of Perceptron Loss
e Convexity
e Comparing with Bayesian Oracle
e Preview of Perceptron Algorithm
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|
Convexity of Perceptron (Soft) Loss

Let us consider the Perceptron (Soft) Loss

10 = 3 o e

@ Is this convex?
e Pick any 07 and 0>. Pick A € [0,1].
@ We want to show that

J(AO1 + (1 = N)02) < AJ(61) + (1 — N\)J(62)
@ But notice that

Yngﬂ(xn) = Yn(WTXn + WO) = (Ynxn)TW + YaWo

= [yax]  yn] [:/;} =a'f.
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Convexity of Perceptron (Soft) Loss

@ Basic fact: If f(-) is convex, then f(A(-) + b) is also convex.

@ Recognize
f(s) = max{ - 5,0}
@ So if we can show that f(s) = max{—s,0} is convex (in s), then

f(a')

is also convex. Put s=a’@.
e Let A €[0,1], and consider two points s, s> € domf
@ Want to show that

f()\sl + (1 — /\)52) < )\f(Sl) + (1 — )\)f(SQ).
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Convexity of Perceptron (Soft) Loss

@ Want to show that

f(As1+ (1 = N)s2) < Af(s1) + (1= N)f(s2).

Use the fact that max(a + b,0) < max(a,0) 4+ max(b,0)
Equality when (a > 0 and b > 0) or (a <0 and b < 0)
Then we can show that

f(As1+ (1 — N)s2) = max(—(As1 + (1 — A)s2),0)
< max{ — )\51,0} + max{ —(1- )\)52,0}

= Amax(—s1,0) 4+ (1 — X\) max(—sz,0)
= M (s1) + (1 — N\)f(s2).

So the perceptron (soft) loss is convex.

Therefore, Jso1(6) is convex in 6.

17/32



Implication of Convexity

You can use CVX to solve the (soft) problem!

o Existence: There must exists 8* € domJ such that J(6*) < J(0) for
any 0 € domJ

@ Uniqueness: Any local minimizer is also a global minimizer with
unique global optimal value.

o Optimal Value: If the two classes are linearly separable, then the
global minimum is achieved when J(6*) =0

@ That means all training samples are classified correctly

o If the two classes are not linearly separable, then you can still get a
solution. But J(6*) > 0.
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Comparing Perceptron and Bayesian Oracle

e Scenario 1:
e N(0,2) with 50 samples and N/ (

10,2

) with 50 samples.

1k

0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8

[ Bayesian oracle

= Perceptron

----- Perceptron decision | |
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Bayesian empirical |

10

@ When everything is “ideal”, perceptron is pretty good.
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Comparing Perceptron and Bayesian Oracle

e Scenario 2:
e N(0,4) with 200 samples and N(lO 4) with 200 samples.

1F o CE)O O o
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0
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@ Even when datasets are intrinsically overlapping, perceptron is still
okay.
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Comparing Perceptron and Bayesian Oracle

@ Scenario 3:
e N(0,2) with 200 samples and A/(10,0.3) with 200 samples.
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e When Gaussians have different covariances, the perceptron (as a
linear classifier) does not work.
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Comparing Perceptron and Bayesian Oracle

@ Scenario 4:
e N(0,1) with 1800 samples and N(10,1) with 200 samples.

[ Bayesian oracle
Bayesian empirical |
s Perceptron
----- Perceptron decision | |

O training sample

-5 0 5 10 15

@ Number of training samples, in this example, does not seem to affect
the algorithm.
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Comparing Perceptron and Bayesian Oracle

@ Scenario 5: 1800 samples and 200 samples.
e N(0,1) with mp = 0.9 and A/(10,1) with 73 = 0.1.
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@ Intrinsic imbalance between the two distributions does not seem to
affect the algorithm.
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Perceptron with Hard Loss

o Historically, we have perceptron algorithm way earlier than CVX.

o Before the age of CVX, people solve perceptron using gradient

descent.
@ Let us be explicit about which loss:
N
Jhara(0) Z max{ = thg(XJ),O}
j:l

Jsots (6 Zmax{ vigo(x;), 0}

Goal: To get a solution for J,,,q(60)

Approach: Gradient descent on Jsg(0)
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Re-defining the Loss

@ Main idea: Use the fact that
N
Joe(0) = Y max{ — y;g0(x;). 0}
j=1

is the same as this loss function

JO)=— D yeo(x).

JjeEM(8)

e M(0) C{1,...,N} is the set of misclassified samples.

o Run gradient descent on J(8), but fixing M(8) < M(8%) for
iteration k.
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Perceptron Algorithm

Therefore, the algorithm is
For k=1,2,...,
Update My = {j | y;ga(x;) < 0} for 8 = 6K

Gradient descent
wik+1) W(k
W(gk+1) =

End For

The set M can grow or can shrink from M _;.

+ ag Z [yJXJ]

JEMy

If training samples are linearly separable, then converge. Zero training
loss.

If training samples are not linearly separable, then oscillates.
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|
Updating One Sample

o Initially there is a w(k).

@ There is a mis-classifier training sample x3
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|
Updating One Sample

@ Perceptron algorithm finds y;x1

@ y1x1 is in the opposite direction as x;
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|
Updating One Sample

o w(k*1) is 3 linear combination of w(k) and YiX1.
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|
Updating One Sample

o w(kt1) gives a new separating hyperplane.

30/32



|
Updating One Sample
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@ Now you are happy!
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Reading List

Perceptron Algorithm
@ Abu-Mostafa, Learning from Data, Chapter 1.2
@ Duda, Hart, Stork, Pattern Classification, Chapter 5.5

@ Cornell CS 4780 Lecture https://www.cs.cornell.edu/courses/
cs4780/2018fa/lectures/lecturenote03.html

e UCSD ECE 271B Lecture http://www.svcl.ucsd.edu/courses/
ece271B-F09/handouts/perceptron. pdf
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