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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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Outline

Discriminative Approaches

Lecture 16 Perceptron 1: Definition and Basic Concepts

Lecture 17 Perceptron 2: Algorithm and Property

This lecture: Perceptron 1

From Logistic to Perceptron

What is Perceptron? Why study it?
Perceptron Loss
Connection with other losses

Properties of Perceptron Loss

Convexity
Comparing with Bayesian Oracle
Preview of Perceptron Algorithm
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Perceptron as a Single-Layer Network

Logistic regression: Soft threshold

Perceptron: Hard threshold
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From Logistic to Perceptron

Logistic regression

h(x) =
1

1 + e−a(x−x0)
.

Make a→∞, then h(x)→ step function

lim
a→∞

h(x) = lim
a→∞

1

1 + e−a(x−x0)

= sign(a(x − x0)).
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From Logistic to Perceptron

Linear regression
hθ(x) = sign(wTx + w0).

Stage 1: Training the discriminant function

gθ(x) = wTx + w0.

Stage 2: Threshold to make decision

hθ(x) = sign(gθ(x)).

Logistic regression

hθ(x) =
1

1 + e−(wT x+w0)
.

Perceptron algorithm

hθ(x) = sign(wTx + w0).
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How to Define Perceptron Loss Function

Logistic regression

J(θ) =
N∑

n=1

−
{
yn log hθ(xn) + (1− yn) log(1− hθ(xn))

}

Okay if hθ(xn) is soft-decision.
Not okay if hθ(xn) is binary: Either all fit or none fit.

“Candidate” perceptron loss function

J(θ) =
N∑

n=1

max
{
− ynhθ(xn), 0

}
.

Does not have the log-term
Will not run into ±∞
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Understanding the Perceptron Loss function

“Candidate” perceptron loss function

Jhard(θ) =
N∑

n=1

max
{
− ynhθ(xn), 0

}
.

hθ(xn) = sign(wTxn + w0) is either +1 or -1.
If the decision is correct, then must have

hθ(xn) = +1 and yn = +1
hθ(x) = −1 and yn = −1
In both cases, ynhθ(xn) = +1
So the loss is max{−ynhθ(xn), 0} = 0.

If the decision is wrong, then must have
hθ(xn) = +1 and yn = −1
hθ(xn) = −1 and yn = +1
In both cases, ynhθ(xn) = −1
So the loss is max{−ynhθ(xn), 0} = 1.

J(θ) is not differentiable in θ.
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Perceptron Loss function

Define the perceptron loss as

Jsoft(θ) =
N∑

n=1

max
{
− yngθ(xn), 0

}
.

gθ(xn) = wTxn + w0 is either +ve or -ve.

If the decision is correct, then must have
gθ(xn) > 0 and yn = +1
gθ(x) < 0 and yn = −1
In both cases, yngθ(xn) > 0
So the loss is max{−yngθ(xn), 0} = 0.

If the decision is wrong, then must have
gθ(xn) > 0 and yn = −1
gθ(xn) < 0 and yn = +1
In both cases, yngθ(xn) < 0
So the loss is max{−yngθ(xn), 0} > 0.
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Comparing the loss function

Linear regression
J(θ) =

∑N
n=1(gθ(xn)− yn)2

Convex, closed-form solution
Usually: Unique global minimizer

Logistic regression

J(θ) =
∑N

n=1−
{
yn log hθ(xn) + (1− yn) log(1− hθ(xn))

}
Convex, no closed-form solution
Usually: Unique global minimizer

Perceptron (Hard)

Jhard(θ) =
∑N

n=1 max
{
− ynhθ(xn), 0

}
Not convex, no closed-form solution
Usually: Many global minimizers

Perceptron (Soft)

Jsoft(θ) =
∑N

n=1 max
{
− yngθ(xn), 0

}
Convex, no closed-form solution
Usually: Unique global minimizer
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Comparing the loss function

https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture5.pdf
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Perceptron Loss, Hinge Loss and ReLU

Perceptron Loss Rectified Linear Unit

The function f (s) = max(−s, 0) is called the perceptron loss

A variant max(1− s, 0) is called Hinge Loss

Another variant max(s, 0) is called ReLU

We can prove that the gradient of f (s) = max(−xT s, 0) is

∇s max(−xT s, 0) =

{
−x , if xT s < 0,

0, if xT s ≥ 0.
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Comparing Loss functions

https://scikit-learn.org/dev/auto_examples/linear_model/plot_sgd_loss_

functions.html
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Convexity of Perceptron (Soft) Loss

Let us consider the Perceptron (Soft) Loss

Jsoft(θ) =
N∑

n=1

max
{
− yngθ(xn), 0

}
Is this convex?

Pick any θ1 and θ2. Pick λ ∈ [0, 1].

We want to show that

J(λθ1 + (1− λ)θ2) ≤ λJ(θ1) + (1− λ)J(θ2)

But notice that

yngθ(xn) = yn(wTxn + w0) = (ynxn)Tw + ynw0

=
[
ynxT

n yn
] [w

w0

]
= aTθ.
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Convexity of Perceptron (Soft) Loss

Basic fact: If f (·) is convex, then f (A(·) + b) is also convex.

Recognize

f (s) = max
{
− s, 0

}
So if we can show that f (s) = max{−s, 0} is convex (in s), then

f (aTθ)

is also convex. Put s = aTθ.

Let λ ∈ [0, 1], and consider two points s1, s2 ∈ domf

Want to show that

f (λs1 + (1− λ)s2) ≤ λf (s1) + (1− λ)f (s2).
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Convexity of Perceptron (Soft) Loss

Want to show that

f (λs1 + (1− λ)s2) ≤ λf (s1) + (1− λ)f (s2).

Use the fact that max(a + b, 0) ≤ max(a, 0) + max(b, 0)

Equality when (a > 0 and b > 0) or (a < 0 and b < 0)

Then we can show that

f (λs1 + (1− λ)s2) = max(−(λs1 + (1− λ)s2), 0)

≤ max
{
− λs1, 0

}
+ max

{
− (1− λ)s2, 0

}
= λmax(−s1, 0) + (1− λ) max(−s2, 0)

= λf (s1) + (1− λ)f (s2).

So the perceptron (soft) loss is convex.

Therefore, Jsoft(θ) is convex in θ.
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Implication of Convexity

You can use CVX to solve the (soft) problem!

Existence: There must exists θ∗ ∈ domJ such that J(θ∗) ≤ J(θ) for
any θ ∈ domJ

Uniqueness: Any local minimizer is also a global minimizer with
unique global optimal value.

Optimal Value: If the two classes are linearly separable, then the
global minimum is achieved when J(θ∗) = 0

That means all training samples are classified correctly

If the two classes are not linearly separable, then you can still get a
solution. But J(θ∗) > 0.

18 / 32



c©Stanley Chan 2020. All Rights Reserved.

Comparing Perceptron and Bayesian Oracle

Scenario 1:

N (0, 2) with 50 samples and N (10, 2) with 50 samples.
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When everything is “ideal”, perceptron is pretty good.
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Comparing Perceptron and Bayesian Oracle

Scenario 2:

N (0, 4) with 200 samples and N (10, 4) with 200 samples.

-5 0 5 10 15

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Bayesian oracle

Bayesian empirical

Perceptron

Perceptron decision

training sample

Even when datasets are intrinsically overlapping, perceptron is still
okay.
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Comparing Perceptron and Bayesian Oracle

Scenario 3:

N (0, 2) with 200 samples and N (10, 0.3) with 200 samples.
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When Gaussians have different covariances, the perceptron (as a
linear classifier) does not work.
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Comparing Perceptron and Bayesian Oracle

Scenario 4:

N (0, 1) with 1800 samples and N (10, 1) with 200 samples.
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Number of training samples, in this example, does not seem to affect
the algorithm.
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Comparing Perceptron and Bayesian Oracle

Scenario 5: 1800 samples and 200 samples.

N (0, 1) with π0 = 0.9 and N (10, 1) with π1 = 0.1.
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Intrinsic imbalance between the two distributions does not seem to
affect the algorithm.
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Perceptron with Hard Loss

Historically, we have perceptron algorithm way earlier than CVX.

Before the age of CVX, people solve perceptron using gradient
descent.

Let us be explicit about which loss:

Jhard(θ) =
N∑
j=1

max
{
− yjhθ(x j), 0

}

Jsoft(θ) =
N∑
j=1

max
{
− yjgθ(x j), 0

}
Goal: To get a solution for Jhard(θ)

Approach: Gradient descent on Jsoft(θ)
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Re-defining the Loss

Main idea: Use the fact that

Jsoft(θ) =
N∑
j=1

max
{
− yjgθ(x j), 0

}
is the same as this loss function

J(θ) = −
∑

j∈M(θ)

yjgθ(x j).

M(θ) ⊆ {1, . . . ,N} is the set of misclassified samples.

Run gradient descent on J(θ), but fixing M(θ)←M(θk) for
iteration k.

25 / 32



c©Stanley Chan 2020. All Rights Reserved.

Perceptron Algorithm

Therefore, the algorithm is

For k = 1, 2, . . . ,

Update Mk = {j | yjgθ(x j) < 0} for θ = θ(k).

Gradient descent[
w (k+1)

w
(k+1)
0

]
=

[
w (k)

w
(k)
0

]
+ αk

∑
j∈Mk

[
yjx j

yj

]
.

End For

The set Mk can grow or can shrink from Mk−1.

If training samples are linearly separable, then converge. Zero training
loss.

If training samples are not linearly separable, then oscillates.
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Updating One Sample

Initially there is a w (k).

There is a mis-classifier training sample x1
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Updating One Sample

Perceptron algorithm finds y1x1

y1x1 is in the opposite direction as x1
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Updating One Sample

w (k+1) is a linear combination of w (k) and y1x1.
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Updating One Sample

w (k+1) gives a new separating hyperplane.
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Updating One Sample

Now you are happy!
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Reading List

Perceptron Algorithm

Abu-Mostafa, Learning from Data, Chapter 1.2

Duda, Hart, Stork, Pattern Classification, Chapter 5.5

Cornell CS 4780 Lecture https://www.cs.cornell.edu/courses/

cs4780/2018fa/lectures/lecturenote03.html

UCSD ECE 271B Lecture http://www.svcl.ucsd.edu/courses/

ece271B-F09/handouts/perceptron.pdf
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