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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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Linear Regression Reviewed

Linear regression is actually a discriminative method.

Do not require a distributional model.

Construct the hypothesis function directly:

h(x) =

{
+1, if g(x) > 0,

−1, if g(x) < 0.

Consider a binary classification problem with discriminant function:

g(x) = wTx + w0

The goal is to determine the parameters θ = {w ,w0}
Training data: (xn, yn)Nn=1

xn ∈ Rd is the input vector
yn ∈ {−1,+1} is the corresponding label
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Geometry of Linear Regression

The discriminant function g(x) is linear

The hypothesis function h(x) = sign(g(x)) is a unit step
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Loss Function

All discriminant algorithms have a Training Loss Function

J(θ) =
1

N

N∑
n=1

L(g(xn), yn).

In linear regression,

J(θ) =
1

N

N∑
n=1

(g(xn)− yn)2

=
1

N

N∑
n=1

(wTxn + w0 − yn)2

=
1

N

∥∥∥∥∥∥∥
xT

1 1
...

...
xT
N 1

[w
w0

]
−

y1...
yN


∥∥∥∥∥∥∥
2

=
1

N
‖Aθ − y‖2.
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Solution of Linear Regression

Theorem (Linear Regression Solution)

The loss function of a linear regression model is given by

J(θ) = ‖Aθ − y‖2,

of which the minimizer is

θ∗ = (ATA)−1ATy .

Take derivative and setting to zero:

∇θJ(θ) = ∇θ

{
‖Aθ − y‖2

}
= 2AT (Aθ − y) = 0.

So solution is θ∗ = (ATA)−1ATy , assuming ATA is invertible.
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When ATA is large

Computing (ATA)−1 directly is infeasible for large-scale datasets with
a large number of variables

Consider using iterative algorithms such as gradient descent

The gradient descent is given by the iteration:

θ(k+1) = θ(k) − η∇θJ(θ(k))

= θ(k) − η(2ATAθ(k) − 2ATy)

A pictorial illustration of the gradient descent step:
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Treating Linear Regression as Maximum-Likelihood

Minimizing J(θ) is the same as solving a maximum-likelihood:

θ∗ = argmin
θ

‖Aθ − y‖2

= argmin
θ

N∑
n=1

(aT
n θ − yn)2

= argmax
θ

exp

{
−

N∑
n=1

(aT
n θ − yn)2

}

= argmax
θ

N∏
n=1

{
1√

2πσ2
exp

{
−(aT

n θ − yn)2

2σ2

}}
Assume noise is i.i.d. Gaussian with variance σ2.
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Treating Linear Regression as Maximum-a-Posteriori

We can modify the MLE by adding a prior

pΘ(θ) = exp

{
− ρ(θ)

β

}
.

Then, we have a MAP problem:

θ∗ = argmax
θ

N∏
n=1

{
1√

2πσ2
exp

{
−(aT

n θ − yn)2

2σ2

}}
exp

{
− ρ(θ)

β

}

= argmin
θ

1

2σ2

N∑
n=1

(aT
n θ − yn)2 +

1

β
ρ(θ)

= argmin
θ

‖Aθ − y‖2 + λρ(θ), where λ = 2σ2/β.

ρ(·) is called regularization function.

Useful when ATA is not invertible.
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Ridge Regression

One option: Choose a Gaussian prior

exp

{
− ρ(θ)

β

}
= exp

{
− ‖θ‖

2

2σ20

}
Then, the MAP becomes

θ∗ = argmax
θ

N∏
n=1

{
1√

2πσ2
exp

{
−(aT

n θ − yn)2

2σ2

}}
exp

{
− ‖θ‖

2

2σ20

}

= argmin
θ

N∑
n=1

(aT
n θ − yn)2 +

σ2

σ20︸︷︷︸
=λ

‖θ‖2

= argmin
θ

‖Aθ − y‖2 + λ‖θ‖2

This is called Tikhonov regularization or Ridge regression.
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Connection with Bayesian Decision Rule

With infinite training samples, J(θ) converges almost surely to its
expectation

1

N

N∑
n=1

(g(xn)− yn)2
p−→ Ex ,y [g(x)− y)2].

Minimizing J(θ) is essentially minimizing the expectation

θ∗ = argmin
w ,w0

1

N

N∑
n=1

(g(xn)− yn)2

≈ argmin
w ,w0

Ex ,y

[
(wTx + w0 − y)2

]
.
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Summary of the Result

Theorem (Conditions for Linear Regression = Bayes)

Suppose that all the following three conditions are satisfied:

(i) The likelihood p(x |i) is Gaussian satisfying

p(x |i) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µi )

TΣ−1(x − µi )

}
, i ∈ {−1,+1}

(ii) The prior is uniform: py (+1) = py (−1) = 1
2 .

(iii) The number of training samples goes to infinity.

Then, the linear regression model parameter (w ,w0) is given by

w = Σ̃
−1

(µ1 − µ−1), w0 = −1

2
(µ1 + µ−1)Σ̃

−1
(µ1 − µ−1),

where Σ̃
def
= Σ/2, and Σ is the covariance of the Gaussian.
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Sketch of Proof

Let us make some assumptions:

Likelihood: Gaussian with equal covariance:

p(xn|y = +1) =
1√

(2π)d |Σ|
exp

{
−1

2
(xn − µ+1)TΣ−1(xn − µ+1)

}
p(xn|y = −1) =

1√
(2π)d |Σ|

exp

{
−1

2
(xn − µ−1)TΣ−1(xn − µ−1)

}
Prior: Equal prior:

py (+1) =
1

2

py (−1) =
1

2
.
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Sketch of Proof

Taking derivative w.r.t. (w ,w0) yields

d

dw
Ex ,y

[
(wTx + w0 − y)2

]
= 2

(
E[xxT ]w + E[x ]w0 − E[xy ]

)
d

dw0
Ex ,y

[
(wTx + w0 − y)2

]
= 2

(
E[x ]Tw + w0 − E[y ]

)
What is E[x ]?

E[x ] = E[x |y = 1]py (+1) + E[x |y = −1]py (−1)

= µ1

(
1

2

)
+ µ−1

(
1

2

)
=

1

2
(µ1 + µ−1).

What is E[xy ]?

E[xy ] = E[xy |y = +1]py (+1) + E[xy |y = −1]py (−1)

= (+µ1)

(
1

2

)
+ (−µ−1)

(
1

2

)
=

1

2
(µ1 − µ−1).
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Sketch of Proof

What is E
[
(x − E[x ])(x − E[x ])T

]
?

E
[
(x − E[x ])(x − E[x ])T

]
= E

[
(x − E[x ])(x − E[x ])T |y = +1

]
py (+1)

+ E
[
(x − E[x ])(x − E[x ])T |y = −1

]
py (−1)

=
1

2
Σ +

1

2
Σ = Σ.

This will allow us to compute E[xxT ]:

E
[
(x − E[x ])(x − E[x ])T

]
= E[xxT ]− E[x ]E[x ]T .

The remaining is just linear algebra. See Appendix.
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Implication

Linear regression assumes equal covariance for both classes

-5 0 5 10 15

0

0.2
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1

Bayesian allows different variance Σi .

They are equal only when number of training samples is large.

18 / 30



c©Stanley Chan 2020. All Rights Reserved.

When will Linear Regression Go Wrong? (1)

Example 1: When the classes are intrinsically unbalanced.
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0
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0.8

1

Bayesian gives nonlinear decision boundary
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When will Linear Regression Go Wrong? (1)

When the classes are intrinsically unbalanced.

One class has a significantly larger variance than the other.

Nothing to do with the number of training samples.

Regression goes wrong because the big variance class dominates the
sum square error.

So you spend more effort to make that class “happy”.

Bayesian decision rule takes care of this by allowing different Σi .
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When will Linear Regression Go Wrong? (2)

Example 2: When training samples are unbalanced.
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Bayesian performs equally bad.
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When will Linear Regression Go Wrong? (2)

When training samples are unbalanced.

One class has more training samples than the other class.

Nothing to do with the intrinsic distribution. You just did not sample
the training samples uniformly from the true distribution.

Regression goes wrong because the more sample class dominate the
sum square error.

So you spend more effort to make the majority “happy”.

Bayesian suffers too because it has a bad estimate of the mean.
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Does Regularization Help?

We can put regularization to linear regression

J(θ) = ‖Aθ − y‖2 + λ‖θ‖2

Can help some bizarre cases when A is rank deficient.

But what regularization to use? How to control λ?

Prior in Bayesian is a lot more intuitive.

µ̂ =
σ2

Nσ20 + σ2
µ0 +

Nσ20
Nσ20 + σ2

µML.

When N is small, we have the prior to control the estimate.

Linear regression does not have this capability, unless you know what
the decision weights should look like.
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When will Linear Regression Go Wrong? (3)

Example 3: “Outliers”

One sample point appears “abnormally”

Bayesian suffers from the same issue

But Bayesian can use the prior term to mitigate outliers

Of course, you can also do data pre-processing in linear regression to
remove outliers
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Reading List

Linear Regression and Bayesian Decision

Chris Bishop’s Pattern Recognition, Chapter 3.1, 4.1

Hastie-Tibshirani-Friedman’s Elements of Statistical Learning,
Chapter 3.2, 3.4

Stanford CS 229 Discriminant Algorithms
http://cs229.stanford.edu/notes/cs229-notes1.pdf
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Appendix
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Proof of Main Result

By following the steps in the proof sketch, we have shown that

d

dw
Ex ,y

[
(wTx + w0 − y)2

]
= 2

(
E[xxT ]w + E[x ]w0 − E[xy ]

)
= 0

d

dw0
Ex ,y

[
(wTx + w0 − y)2

]
= 2

(
E[x ]Tw + w0 − E[y ]

)
= 0

Look at the second equation

−E[x ]E[x ]Tw −E[x ]w0 +E[x ]E[y ] = 0
+E[xxT ]w +E[x ]w0 −E[xy ] = 0

This gives us

(E[xxT ]− E[x ]E[x ]T )w + 0− (E[xy ]− E[x ]E[y ]) = 0.
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Proof of Main Result

Therefore, we have

(E[xxT ]− E[x ]E[x ]T )︸ ︷︷ ︸
Σ

w + 0− ( E[xy ]︸ ︷︷ ︸
= 1

2
(µ+1−µ−1)

− E[x ]E[y ]︸︷︷︸
=0

) = 0.

This means that

Σw =
1

2
(µ+1 − µ−1),

which gives us

w =
1

2
Σ−1(µ+1 − µ−1).

Compare to the Bayesian decision rule for equal covariance:

w = Σ−1(µ+1 − µ−1).

The only difference is the factor 1/2.
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Proof of Main Result

Now let us determine w0.

Look at the second equation again:

E[x ]Tw + w0 − E[y ] = 0

This means

w0 = E[y ]− E[x ]Tw

= 0−
(

1

2
(µ+1 + µ−1)

)T

w

= 0−
(

1

2
(µ+1 + µ−1)

)T (1

2
Σ−1(µ+1 − µ−1)

)
= −1

4
(µ+1 + µ−1)Σ−1(µ+1 − µ−1).
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Proof of Main Result

If we want to write the decision boundary as wT (x − x0) = 0,

then we can show that

wT (x − x0) =

(
1

2
Σ−1(µ+1 − µ−1)

)
(x − x0) .

Since

w0 = −1

4
(µ+1 − µ−1)Σ−1(µ+1 + µ−1),

in order to make w0 = wTx0, we should choose

x0 =
1

2
(µ+1 + µ−1).

This is the same as the Bayesian decision rule with equal covariance.
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