In linear discriminant analysis (LDA), there are generally two types of approaches:

- **Generative approach**: Estimate model, then define the classifier
- **Discriminative approach**: Directly define the classifier
Outline

Generative Approaches
- Lecture 9 Bayesian Decision Rules
- Lecture 10 Evaluating Performance
- Lecture 11 Parameter Estimation
- Lecture 12 Bayesian Prior
- Lecture 13 Connecting Bayesian and Linear Regression

Today’s Lecture
- Basic Principles
 - Posterior
 - 1D Illustration
 - Interpretations
- Choosing Priors
 - Prior for Mean
 - Prior for Variance
 - Conjugate Prior
MLE and MAP

There are two typical ways of estimating parameters.

- Maximum-likelihood estimation (MLE): θ is deterministic.
- Maximum-a-posteriori estimation (MAP): θ is random and has a prior distribution.
From MLE to MAP

- In MLE, the parameter θ is deterministic.
- What if we assume θ has a distribution?
- This makes θ probabilistic.
- So make Θ as a random variable, and θ a state of Θ.
- Distribution of Θ:
 $$p_\Theta(\theta)$$
- $p_\Theta(\theta)$ is the distribution of the parameter Θ.
- Θ has its own mean and own variance.

$$p_\Theta(\theta)$$
Maximum-a-Posteriori

By Bayes Theorem again:

\[p_{\Theta|x}(\theta|x_n) = \frac{p_{X|\Theta}(x_n|\theta)p_{\Theta}(\theta)}{p_X(x_n)}. \]

To maximize the posterior distribution

\[\hat{\theta} = \arg\max_{\theta} p_{\Theta|x}(\theta|\mathcal{D}) \]

\[= \arg\max_{\theta} \prod_{n=1}^{N} p_{\Theta|x}(\theta|x_n) \]

\[= \arg\max_{\theta} \prod_{n=1}^{N} \frac{p_{X|\Theta}(x_n|\theta)p_{\Theta}(\theta)}{p_X(x_n)} \]

\[= \arg\min_{\theta} -\sum_{n=1}^{N} \left\{ \log p_{X|\Theta}(x_n|\theta) + \log p_{\Theta}(\theta) \right\} \]
The Role of $p_\Theta(\theta)$

- Let’s look at the MAP:
 $$\hat{\theta} = \arg\min_{\theta} - \sum_{n=1}^{N} \left\{ \log p_{X|\Theta}(x_n|\theta) + \log p_\Theta(\theta) \right\}$$

- Special case: When
 $$p_\Theta(\theta) = \delta(\theta - \theta_0).$$

- Then the delta function gives
 $$\log p_\Theta(\theta) = \begin{cases} -\infty, & \text{if } \theta \neq \theta_0, \\ 0, & \text{if } \theta = \theta_0. \end{cases}$$

- This will give
 $$\hat{\theta} = \arg\min_{\theta} - \sum_{n=1}^{N} \left\{ -\infty, \begin{cases} -\infty, & \text{if } \theta \neq \theta_0, \\ \log p_{X|\Theta}(x_n|\theta_0), & \text{if } \theta = \theta_0. \end{cases} \right\} = \theta_0.$$

- No uncertainty. Absolutely sure $\theta = \theta_0$.
Illustration: 1D Example

Suppose that:

\[
p_{X|\Theta}(x|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{(x - \theta)^2}{2\sigma^2} \right\}
\]

\[
p_{\Theta}(\theta) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp \left\{ -\frac{(\theta - \theta_0)^2}{2\sigma_0^2} \right\}.
\]

When \(N = 1 \). The MAP problem is simply

\[
\hat{\theta} = \arg\max_{\theta} \quad p_{X|\Theta}(x|\theta) p_{\Theta}(\theta)
\]

\[
= \arg\max_{\theta} \quad \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{(x - \theta)^2}{2\sigma^2} \right\} \cdot \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp \left\{ -\frac{(\theta - \theta_0)^2}{2\sigma_0^2} \right\}
\]

\[
= \arg\max_{\theta} \quad -\frac{(x - \theta)^2}{2\sigma^2} - \frac{(\theta - \theta_0)^2}{2\sigma_0^2}
\]
Illustration: 1D Example

Taking derivatives:

\[
\frac{d}{d\theta} \left\{ -\frac{(x-\theta)^2}{2\sigma^2} - \frac{(\theta-\theta_0)^2}{2\sigma_0^2} \right\} = 0
\]

\[
\Rightarrow \quad \frac{(x-\theta)}{\sigma^2} - \frac{(\theta-\theta_0)}{\sigma_0^2} = 0
\]

\[
\Rightarrow \quad \sigma_0^2(x - \theta) = \sigma^2(\theta - \theta_0)
\]

\[
\Rightarrow \quad \sigma_0^2 x + \sigma^2 \theta_0 = (\sigma_0^2 + \sigma^2) \theta
\]

Therefore, the solution is

\[
\theta = \frac{\sigma_0^2 x + \sigma^2 \theta_0}{\sigma_0^2 + \sigma^2}.
\]
Interpreting the Result

Let us interpret the result

\[\theta = \frac{\sigma_0^2 x + \sigma^2 \theta_0}{\sigma_0^2 + \sigma^2}. \]

Does it make sense?

- If \(\sigma_0 = 0 \), then \(\theta = \frac{\sigma_0^2 x + \sigma^2 \theta_0}{\sigma_0^2 + \sigma^2} = \theta_0 \).
- This means: No uncertainty. Absolutely sure that \(\theta = \theta_0 \).
- \(p_\Theta(\theta) = \delta(\theta - \theta_0) \)

The other extreme

- If \(\sigma_0 = \infty \), then \(\theta = \frac{\sigma_0^2 x + \sigma^2 \theta_0}{\sigma_0^2 + \sigma^2} = x \).
- This means: I don’t trust my prior at all. Use data.
- \(p_\Theta(\theta) = \frac{1}{|\Omega|} \), for all \(\theta \in \Omega \).

Therefore, MAP solution gives you a trade-off between data and prior.
When $N = 2$. The MAP problem is

$$\hat{\theta} = \arg\max_\theta \ p_{X|\Theta}(x|\theta) p_\Theta(\theta)$$

$$= \arg\max_\theta \left(\prod_{n=1}^{2} p_{X|\Theta}(x_n|\theta) \right) p_\Theta(\theta)$$

$$= \arg\max_\theta \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^2 \exp \left\{ -\frac{(x_1 - \theta)^2 + (x_2 - \theta)^2}{2\sigma^2} \right\}$$

$$\times \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp \left\{ -\frac{(\theta - \theta_0)^2}{2\sigma_0^2} \right\}$$

$$= \arg\min_\theta - \log(\cdot)$$

$$= \arg\min_\theta \left\{ \frac{(x_1 - \theta)^2}{2\sigma^2} + \frac{(x_2 - \theta)^2}{2\sigma^2} + \frac{(\theta - \theta_0)^2}{2\sigma_0^2} \right\}$$
When $N = 2$.

Taking derivatives and setting to zero

$$
\frac{d}{d\theta} \left\{ \frac{(x_1 - \theta)^2}{2\sigma^2} + \frac{(x_2 - \theta)^2}{2\sigma^2} + \frac{(\theta - \theta_0)^2}{2\sigma_0^2} \right\} = \frac{-x_1}{\sigma^2} - \frac{x_2}{\sigma^2} + \frac{\theta - \theta_0}{\sigma_0^2} = 0.
$$

Equating to zero yields

$$
\theta = \frac{(x_1 + x_2)\sigma_0^2 + \theta_0\sigma^2}{2\sigma_0^2 + \sigma^2}.
$$

- If $\sigma_0 = 0$ (certain prior), then $\theta = \theta_0$.
- If $\sigma_0 = \infty$ (useless prior), then $\theta = \frac{x_1 + x_2}{2}$.
When N is Arbitrary

General N.

\[
\hat{\theta} = \arg\max_{\theta} \left[\prod_{n=1}^{N} p_{X|\Theta}(x_n|\theta) \right] p_{\Theta}(\theta)
\]

\[
= \arg\max_{\theta} \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^N \exp \left\{ -\sum_{n=1}^{N} \frac{(x_n - \theta)^2}{2\sigma^2} \right\} \cdot \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp \left\{ -\frac{(\theta - \theta_0)^2}{2\sigma_0^2} \right\}
\]

\[
= \arg\min_{\theta} \left\{ \sum_{n=1}^{N} \frac{(x_n - \theta)^2}{2\sigma^2} + \frac{(\theta - \theta_0)^2}{2\sigma_0^2} \right\}
\]

\[
= \frac{\sigma_0^2 \sum_{n=1}^{N} x_n + \theta_0\sigma^2}{N\sigma_0^2 + \sigma^2}.
\]

What does it mean?
Interpreting the MAP solution: $N \to \infty$

Let’s do some algebra:

$$\hat{\theta} = \frac{\left(\sum_{n=1}^{N} x_n\right) \sigma_0^2 + \theta_0 \sigma^2}{N \sigma_0^2 + \sigma^2} = \frac{\left(\sum_{n=1}^{N} x_n\right) \sigma_0^2 + \theta_0 \sigma^2}{N \left(\sigma_0^2 + \frac{\sigma^2}{N}\right)}$$

$$= \frac{\left(\frac{1}{N} \sum_{n=1}^{N} x_n\right) \sigma_0^2 + \sigma_0^2}{\sigma_0^2 + \frac{\sigma^2}{N}}.$$

- Fix σ_0 and σ
- As $N \to \infty$,

$$\hat{\theta} = \frac{\left(\frac{1}{N} \sum_{n=1}^{N} x_n\right) \sigma_0^2 + \sigma_0^2 \theta_0}{\sigma_0^2 + \sigma_0^2} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

- This is the maximum-likelihood estimate.
- When I have a lot of samples, the prior does not really matter.
Interpreting the MAP solution: $N \to 0$

\[\hat{\theta} = \frac{\left(\frac{1}{N} \sum_{n=1}^{N} x_n \right) \sigma_0^2 + \frac{\sigma^2}{N} \theta_0}{\sigma_0^2 + \frac{\sigma^2}{N}} \]

- Fix σ_0 and σ
- As $N \to 0$,

\[\hat{\theta} = \frac{\left(\frac{1}{N} \sum_{n=1}^{N} x_n \right) \sigma_0^2 + \frac{\sigma^2}{N} \theta_0}{\sigma_0^2 + \frac{\sigma^2}{N}} = \theta_0. \]

- This is just the prior.
- When I have very few sample, I should rely on the prior.
- If the prior is good, then I can do well even if I have very few samples.
- Maximum-likelihood does not have the same luxury!
What Happens to the Posterior?

Consider

\[
p(D|\mu) = \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^N \exp \left\{ -\sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2} \right\}
\]

\[
p(\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp \left\{ -\frac{(\mu - \mu_0)^2}{2\sigma_0^2} \right\}.
\]

We can show that the posterior is

\[
p(\mu|D) = \frac{1}{\sqrt{2\pi\sigma_N^2}} \exp \left\{ -\frac{(\mu - \mu_N)^2}{2\sigma_N^2} \right\},
\]

where

\[
\mu_N = \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \mu_{ML}
\]

\[
\sigma_N^2 = \frac{\sigma^2\sigma_0^2}{\sigma^2 + N\sigma_0^2}.
\]
What Happens to the Posterior?

- x_n are generated from $\mu = 0.8$ and $\sigma^2 = 0.1$.
- When N increases, the posterior shifts towards the true distribution.
Outline

Generative Approaches
- Lecture 9 Bayesian Decision Rules
- Lecture 10 Evaluating Performance
- Lecture 11 Parameter Estimation
- Lecture 12 Bayesian Prior
- Lecture 13 Connecting Bayesian and Linear Regression

Today’s Lecture
- Basic Principles
 - Posterior
 - 1D Illustration
 - Interpretations
- Choosing Priors
 - Prior for Mean
 - Prior for Variance
 - Conjugate Prior
Prior for μ

So far we have considered

$$p(D|\mu) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^N \exp\left\{-\sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2}\right\}$$

$$p(\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left\{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right\}.$$

- Unknown μ, and known σ^2.
- The likelihood is Gaussian (by problem setup).
- The prior for μ is Gaussian (by our choice).
- Good, because posterior remains a Gaussian.
- What happens if σ^2 is unknown but μ is known?
Prior for σ^2

- Let us define the precision: $\lambda = \frac{1}{\sigma^2}$.
- The likelihood is

$$p(D|\lambda) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^N \exp\left\{-\sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2}\right\}$$

$$= \left(\frac{\lambda^{N/2}}{(\sqrt{2\pi})^N}\right) \exp\left\{-\sum_{n=1}^{N} \frac{\lambda}{2}(x_n - \mu)^2\right\}$$

$$= \frac{1}{(2\pi)^{N/2}} \lambda^{N/2} \exp\left\{-\frac{\lambda}{2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}.$$

- We want to choose $p(\lambda)$ in a similar form:

$$p(\lambda) = A\lambda^B \exp\{-C\lambda\}$$

so that the posterior $p(\lambda|D)$ is easy to compute.
Prior for σ^2

- We want to choose $p(\lambda)$ in a similar form:
 \[p(\lambda) = A\lambda^B \exp\{-C\lambda\} \]

- The candidate is ...

 \[p(\lambda) = \frac{1}{\Gamma(a)} b^a \lambda^{a-1} \exp(-b\lambda) \]

- This distribution is called the Gamma distribution $\text{Gam}(\lambda|a, b)$.

- We can show that
 \[\mathbb{E}[\lambda] = \frac{a}{b}, \quad \text{Var}[\lambda] = \frac{a}{b^2}. \]
Prior for σ^2

- If we consider this pair of likelihood and prior

$$p(D | \lambda) = \frac{1}{(2\pi)^{N/2}} \lambda^{N/2} \exp \left\{ -\frac{\lambda}{2} \sum_{n=1}^{N} (x_n - \mu)^2 \right\}$$

$$p(\lambda) = \frac{1}{\Gamma(a_0)} b_0^{a_0} \lambda^{a_0-1} \exp(-b_0 \lambda),$$

- then the posterior is

$$p(\lambda | D) \propto \lambda^{(a_0+N/2)-1} \exp \left\{ - \left(b_0 + \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^2 \right) \lambda \right\}$$

- Just another Gamma distribution.
- You can now do estimation on this Gamma by finding λ which maximizes the posterior. Details: See Appendix.
Prior for Both μ and σ^2

- Again, let $\lambda = \frac{1}{\sigma^2}$.
- The likelihood is
 \[
p(D|\mu, \lambda) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^N \exp\left\{-\sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2}\right\}
 \propto \left[\lambda^{1/2} \exp\left\{-\frac{\lambda \mu^2}{2}\right\}\right]^N \exp\left\{\lambda \mu \sum_{n=1}^{N} x_n - \frac{\lambda}{2} \sum_{n=1}^{N} x_n^2\right\}
 \]
- Candidate for the prior is
 \[
p(\mu, \lambda) \propto \left[\lambda^{1/2} \exp\left\{-\frac{\lambda \mu^2}{2}\right\}\right]\beta
 \exp\left\{c \lambda \mu - d \lambda\right\}
 = \exp\left\{-\frac{\beta \lambda}{2}\left(\mu - \frac{c}{\beta}\right)^2\right\} \lambda^{\beta/2} \exp\left\{-\left(d - \frac{c^2}{2\beta}\right) \lambda\right\}
 \]
 \[
 \mathcal{N}(\mu|\mu_0, \sigma_0^2) \quad \text{Gam}(\lambda|a,b)
 \]
- The prior distribution is called the Normal-Gamma distribution.
Priors for High-dimension Gaussians

- Let $\Lambda = \Sigma^{-1}$.
- The likelihood is
 \[p(x_n|\mu,\Sigma) = \mathcal{N}(x_m|\mu,\Lambda^{-1}) \]
- Prior for μ: Gaussian.
 \[p(\mu) = \mathcal{N}(\mu|\mu_0,\Lambda_0^{-1}). \]
- Prior for Σ: Wishart.
 \[p(\Lambda) = \mathcal{W}(\Lambda|\mathbf{W},\nu). \]
- Prior for both μ and Σ: Normal-Wishart.
 \[p(\mu,\Lambda) = \mathcal{N}(\mu|\mu_0,(\beta\Lambda)^{-1})\mathcal{W}(\Lambda|\mathbf{W},\nu). \]
Conjugate Prior

- You have a likelihood $p_{X|\Theta}(x|\theta)$
- You want to choose a prior $p_{\Theta}(\theta)$ so that ...
- the posterior $p_{\Theta|X}(\theta|x)$ takes the same form as the prior
- Such prior is called the **conjugate prior**
- Conjugate *with respect to* the likelihood
- Finding the conjugate prior may not be easy!
- Good news: Any likelihood belong to the **exponential family** will have a conjugate prior also in the exponential family.
- Exponential family: Gaussian, Exponential, Poisson, Bernoulli, etc
- For more discussions, see Bishop Chapter 2.4
Bayesian Parameter Estimation

- Duda-Hart-Stork, Pattern Classification, Chapter 3.3 - 3.5
- Bishop, Pattern Recognition and Machine Learning, Chapter 2.4
- M. Jordan (Berkeley),
Appendix
Prior for σ^2: Solution

- The posterior is

$$p(\lambda|D) \propto \lambda^{(a_0+N/2)-1} \exp \left\{ - \left(b_0 + \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^2 \right) \lambda \right\}$$

$$\propto \lambda^{a_N-1} \exp \left\{ -b_N \lambda \right\}.$$

- The maximum-a-posteriori estimate of λ is

$$\hat{\lambda} = \arg\max_{\lambda} p(\lambda|D)$$

$$= \arg\max_{\lambda} \lambda^{a_N-1} \exp \left\{ -b_N \lambda \right\}$$

$$= \arg\max_{\lambda} \left(a_N - 1 \right) \log \lambda - b_N \lambda.$$

- Taking derivative and setting to zero:

$$\frac{d}{d\lambda} \left((a_N - 1) \log \lambda - b_N \lambda \right) = \frac{a_N - 1}{\lambda} - b_N = 0.$$
Prior for σ^2: Solution

Therefore,

$$\lambda = \frac{a_N - 1}{b_N}.$$

where the parameters are

$$a_N = a_0 + \frac{N}{2},$$

$$b_N = b_0 + \frac{1}{2} \sum_{n=1}^{N} (x_n - \mu)^2 = b_0 + \frac{N}{2} \sigma_{ML}^2.$$

Hence, the MAP estimate is

$$\lambda = \frac{a_0 + \frac{N}{2}}{b_0 + \frac{N}{2} \sigma_{ML}^2}.$$

As $N \to \infty$, $\lambda \to \frac{1}{\sigma_{ML}^2}$.

As $N \to 0$, $\lambda \to \frac{a_0}{b_0}$.
Again, let $\lambda = \frac{1}{\sigma^2}$.

The likelihood is

$$p(D|\mu, \lambda) = \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right)^N \exp \left\{ - \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2} \right\}$$

$$= \left(\frac{\lambda}{2\pi} \right)^{N/2} \exp \left\{ - \frac{\lambda}{2} \sum_{n=1}^{N} (x_n - \mu)^2 \right\}$$

$$= \left(\frac{\lambda}{2\pi} \right)^{N/2} \exp \left\{ - \frac{\lambda}{2} \sum_{n=1}^{N} (x_n^2 - 2\mu x_n + \mu^2) \right\}$$

$$= \left(\frac{\lambda}{2\pi} \right)^{N/2} \exp \left\{ - \frac{\lambda}{2} \sum_{n=1}^{N} x_n^2 + \lambda \mu \sum_{n=1}^{N} x_n \right\} \left[\exp \left\{ - \frac{\lambda\mu^2}{2} \right\} \right]^N$$

$$= \left(\frac{1}{2\pi} \right)^{N/2} \left[\lambda^{1/2} \exp \left\{ - \frac{\lambda\mu^2}{2} \right\} \right]^N \exp \left\{ \lambda \mu \sum_{n=1}^{N} x_n - \frac{\lambda}{2} \sum_{n=1}^{N} x_n^2 \right\}$$
Prior for Both μ and σ^2: Detailed Derivation

- The likelihood is

$$p(D|\mu, \lambda) \propto \left[\lambda^{1/2} \exp \left\{ -\frac{\lambda \mu^2}{2} \right\} \right]^N \exp \left\{ \lambda \mu \sum_{n=1}^{N} x_n - \frac{\lambda}{2} \sum_{n=1}^{N} x_n^2 \right\}$$

- Candidate for the prior is

$$p(\mu, \lambda) \propto \left[\lambda^{1/2} \exp \left\{ -\frac{\lambda \mu^2}{2} \right\} \right]^\beta \exp \left\{ c \lambda \mu - d \lambda \right\}$$

$$= \left[\exp \left\{ -\frac{\lambda \mu^2}{2} \right\} \right]^\beta \left[\lambda^{\beta/2} \exp \left\{ c \lambda \mu - d \lambda \right\} \right]$$

$$= \exp \left\{ -\frac{\beta \lambda}{2} (\mu - c/\beta)^2 \right\} \lambda^{\beta/2} \exp \left\{ - \left(d - \frac{c^2}{2\beta} \right) \lambda \right\}$$

$$= \mathcal{N}(\mu|\mu_0, \sigma_0^2) \times \text{Gam}(\lambda|a,b)$$

- $$\mu_0 = c/\beta, \quad \sigma_0^2 = (\beta \lambda)^{-1}, \quad a = 1 + \beta/2, \quad b = d - c^2/2\beta$$
Prior for Both μ and σ^2: Detailed Derivation

- The prior distribution is

 $$p(\mu, \lambda) = \mathcal{N}(\mu | \mu_0, (\beta \lambda)^{-1}) \, \text{Gam}(\lambda | a, b)$$

- This is called the Normal-Gamma distribution

- Here is a 2D plot of $p(\mu, \lambda)$ when $\mu_0 = 0$, $\beta = 2$, $a = 5$, $b = 6$.