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Overview

Supervised Learning for Classification
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Outline

Feature Analysis

Lecture 7 Principal Component Analysis (PCA)

Lecture 8 Hand-Crafted and Deep Features

This Lecture

Little History of Feature Extractions

Convolution
What is convolution (if you don’t know what it is yet)?
Some interesting facts about convolution

SIFT and HOG
Gaussian derivatives
Pyramid
Histogram of oriented gradients

Deep Features
What are they?
How to use them?
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A Rough History of Feature Extraction

Deep Learning for Generic Object Detection: A Survey, https://arxiv.org/pdf/1809.02165.pdf

PCA: Statistical analysis. Content agnostic.

SIFT: Image specific. Non-training.

Deep Features: Image specific. Training.
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Convolution

Convolution (2D) is between two functions f and h:

An input function f (x), indexed by spatial coordinate x = [x1, x2]T

A filter h(x)

The output is of the convolution is

g(x) = f (x) ∗ h(x)

=

∫
f (x − ξ)h(ξ)dξ

Do not be confused with correlation:

g(x) = f (x) ~ h(x)

=

∫
f (x + ξ)h(ξ)dξ

Convolution flips the filter, whereas correlation does not.
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Pictorial Illustration

A convolution operation always involves 3 steps: flip-shift-add.

Most tutorials you see on the internet are correlations.

https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution
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A Few Things You Need to Know about Convolution

The core of convolution is the concept of linear shift invariant (LSI).
A system T is LSI if

T (af1(x) + bf2(x)) = aT (f1(x)) + bT (f2(x))
Let g(x) = T (f (x)). Then for any ξ, f (x + ξ) 7→ g(x + ξ).

Convolution is the only operation that allows LSI.
Eigen-functions of a convolution operation are the Fourier series.
The flip operation is necessary to define the Fourier series.
This can be dated back to Pierre-Simon Laplace (1749-1827) and
Joseph Fourier (1768-1830), with 200 years of work in real /
functional analysis.
Convolution with large filters are always implemented by Fast Fourier
Transforms.
Convolution can be performed at the speed of light! Put a mask at
the focal plane of the lens. It will give you the convolution of the
mask and the image (in the Fourier domain).
https://www.youtube.com/watch?v=4Eg0Tbk601s
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Effect of Convolution / Correlation

https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_gabor.html 8 / 29
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Examples of Filters

Gabor Filter

https://www.researchgate.net/figure/

Real-parts-of-the-Gabor-filter-bank-Generated-for-different-combinations-of-th-in_fig5_292671765
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Examples of Filters

Another Gabor Filter

https://www.quora.com/How-are-Gabor-filters-implemented-in-visual-area-V1-in-the-brain
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Examples of Filters

KSVD Filters

https://www.researchgate.net/figure/

Basis-functions-used-by-a-KSVD-The-KSVD-based-dictionary-elements-or-atoms-mostly_fig6_336133323
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SIFT

SIFT = Scale-invariant feature transform.

Proposed by David Lowe in 1999.

Idea: Convolve the image with the 2nd order derivative of a
Gaussian.

Vary the radius of the Gaussian. Locate the radius that maximizes the
response.

What makes SIFT so powerful? The derivative of Gaussian filter
extracts the scale:

G (x , kσ)− G (x , σ) ≈ (k − 1)σ2∇2
x
G ,

where G (x , σ) = (1/(2πσ2)) exp{−‖x‖2/(2σ2)}.
Output of SIFT: A set of locations where there are “blobs”.

Can be used for registering images.
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Gaussian Filter for Edge Detection

https://towardsdatascience.com/sift-scale-invariant-feature-transform-c7233dc60f37 14 / 29
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2nd Order Gaussian Derivative

https://towardsdatascience.com/sift-scale-invariant-feature-transform-c7233dc60f37 15 / 29
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Locating Blobs

https://towardsdatascience.com/sift-scale-invariant-feature-transform-c7233dc60f37
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Scale Pyramid

https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf
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Example

http://cs.brown.edu/courses/cs143/2013/results/proj2/rroelke/
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SIFT + HOG

HOG = Histogram of Oriented Gradient
Used to “encode” the detected blobs

https://towardsdatascience.com/sift-scale-invariant-feature-transform-c7233dc60f37 19 / 29
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Deep Features

Create a convolutional neural network (See Deep Learning courses).

Investigate the features extracted at different stages of the network.

Source: Stanford CS 231n Lecture Note
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Deep Features

https://www.analyticsvidhya.com/blog/2018/03/

essentials-of-deep-learning-visualizing-convolutional-neural-networks/cnn_filters/
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Hierarchical Representations

Source: Stanford CS 231n Lecture Note
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Deep Features

Going through the layers, the network learns different representations

https://stats.stackexchange.com/questions/146413/why-convolutional-neural-networks-belong-to-deep-learning24 / 29
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Hierarchical Representations
https://e2e.ti.com/blogs_/b/behind_the_wheel/archive/2018/02/08/ai-in-automotive-practical-deep-learning
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Combining Features
http://www.fubin.org/research/Person_ReID/Person_ReID.html
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Using Deep Features for kNN
https://github.com/cvjena/semantic-embeddings
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Using Deep Features for Super-Resolution
https://towardsdatascience.com/review-fsrcnn-super-resolution-80ca2ee14da4
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Reading List

Convolution

Oppenheim and Willsky, Signals and Systems, Chapter 2.

ECE 637 Image Processing 1
https://engineering.purdue.edu/~bouman/ece637/notes/

SIFT and HOG

ECE 661 Computer Vision https://engineering.purdue.edu/

kak/computervision/ECE661Folder/Lecture9.pdf

Lowe’s original SIFT paper https:
//people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

Blog on HOG https:

//www.learnopencv.com/histogram-of-oriented-gradients/

Deep Features

Stanford CS 231n http://cs231n.stanford.edu/
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