ECE 595: Machine Learning I Lecture 07 Feature Analysis via PCA

Spring 2020
Stanley Chan
School of Electrical and Computer Engineering
Purdue University

PURDUE

Overview

Supervised Learning for Classification

Outline

Feature Analysis

- Lecture 7 Principal Component Analysis (PCA)
- Lecture 8 Hand-Crafted and Deep Features

This Lecture

- PCA
- Low-dimensional Representation
- Geometric Interpretation
- Eigen-Face Problem
- Kernel-PCA
- Adding kernels to PCA
- Algorithm
- Examples

Low-Dimensional Representation

- Consider a set of data point $\left\{\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(N)}\right\}$
- These data points are living in a high dimensional space $\boldsymbol{x}^{(n)} \in \mathbb{R}^{d}$
- Find a low dimensional representation in \mathbb{R}^{p} where $p<d$
- Equivalent to finding the principal components $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}$ such that

$$
\boldsymbol{x}^{(n)} \approx \sum_{i=1}^{p} \alpha_{i}^{(n)} \boldsymbol{v}_{i}
$$

- Then every $\boldsymbol{x}^{(n)} \in \mathbb{R}^{d}$ can be represented using $\boldsymbol{\alpha}^{(n)} \in \mathbb{R}^{p}$.

One Sample Analysis

- Consider a simpler problem: One data point \boldsymbol{x} and one direction \boldsymbol{v}.
- We want to find a direction $\widehat{\boldsymbol{v}}$ and a scalar $\widehat{\alpha}$ such that

$$
(\widehat{\boldsymbol{v}}, \widehat{\alpha})=\underset{\|\boldsymbol{v}\|_{2}=1, \alpha}{\operatorname{argmin}}\left\|\left[\begin{array}{c}
\mid \\
\boldsymbol{x} \\
\mid
\end{array}\right]-\alpha\left[\begin{array}{c}
\mid \\
\boldsymbol{v} \\
\mid
\end{array}\right]\right\|^{2}
$$

- First assume \boldsymbol{v} is available. Then take derivative w.r.t. α :

$$
2 \boldsymbol{v}^{T}(\boldsymbol{x}-\alpha \boldsymbol{v})=0 \quad \Rightarrow \quad \alpha=\boldsymbol{v}^{T} \boldsymbol{x}
$$

One Sample Analysis

- Substitute $\alpha=\boldsymbol{x}^{T} \boldsymbol{v}$ into the optimization
- Then the optimization becomes

$$
\begin{aligned}
\underset{\|v\|_{2}=1}{\operatorname{argmin}}\|\boldsymbol{x}-\alpha \boldsymbol{v}\|^{2} & =\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}}\left\{\boldsymbol{x}^{T} \boldsymbol{x}-2 \alpha \boldsymbol{x}^{T} \boldsymbol{v}+\alpha^{2} \boldsymbol{v}^{\top} \boldsymbol{v}\right\} \\
& =\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}}\left\{-2 \alpha \boldsymbol{x}^{T} \boldsymbol{v}+\alpha^{2}\right\} \\
& =\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}}\left\{-2\left(\boldsymbol{x}^{\top} \boldsymbol{v}\right) \boldsymbol{x}^{T} \boldsymbol{v}+\left(\boldsymbol{x}^{T} \boldsymbol{v}\right)^{2}\right\} \\
& =\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}}\left\{\boldsymbol{v}^{\top} \boldsymbol{x}^{T} \boldsymbol{v}\right\}
\end{aligned}
$$

- Take expectation on both sides:

$$
\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{X}}\|\boldsymbol{x}-\alpha \boldsymbol{v}\|^{2}=\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{\top} \mathbb{E}_{\boldsymbol{X}}\left\{\boldsymbol{x} \boldsymbol{x}^{\top}\right\} \boldsymbol{v}
$$

Eigenvalue Problem

- Let $\boldsymbol{\Sigma} \stackrel{\text { def }}{=} \mathbb{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right]$.
- Then the optimization problem is

$$
\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{\top} \boldsymbol{\Sigma} \boldsymbol{v} .
$$

- The solution to this problem is the eigenvalue and eigenvectors of $\boldsymbol{\Sigma}$.

Theorem

Let $\boldsymbol{\Sigma}$ be a $d \times d$ matrix with eigen-decomposition $\boldsymbol{\Sigma}=\boldsymbol{U S} \boldsymbol{U}^{T}$. Then, the optimization

$$
\widehat{\boldsymbol{v}}=\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{\Sigma} \boldsymbol{v} .
$$

has a solution $\widehat{\boldsymbol{v}}=\boldsymbol{u}_{i}$ for any $i=1, \ldots, d$.
Proof: See Appendix.

Finite Samples

- When there are N training samples, the optimization is

$$
\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmin}} \underbrace{\frac{1}{N} \sum_{n=1}^{N}\left\|\boldsymbol{x}^{(n)}-\alpha^{(n)} \boldsymbol{v}\right\|^{2}}_{=\mathbb{E}\left[\|\boldsymbol{x}-\alpha \boldsymbol{v}\|^{2}\right], N \rightarrow \infty}=\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T} \underbrace{\left\{\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}\left(\boldsymbol{x}^{(n)}\right)^{T}\right\}}_{=\mathbb{E}\left[\boldsymbol{x} \boldsymbol{x}^{T}\right], N \rightarrow \infty} \boldsymbol{v}
$$

- In practice, given $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(N)}$, we approximate $\boldsymbol{\Sigma}$ by its empirical estimate

$$
\boldsymbol{\Sigma} \approx \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}\left(\boldsymbol{x}^{(n)}\right)^{T}
$$

- You can also remove the mean vectors: $\boldsymbol{\mu}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}$:

$$
\boldsymbol{\Sigma} \approx \frac{1}{N} \sum_{n=1}^{N}\left(\boldsymbol{x}^{(n)}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}^{(n)}-\boldsymbol{\mu}\right)^{T}
$$

Statistical Interpretation

- The optimization

$$
\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{\Sigma} \boldsymbol{v} .
$$

asks us to find a principal direction that maximizes the variance.

- Belief: Large variance $=$ "signal" , small variance $=$ "noise"

The Eigenface Problem

Figure: The extended Yale Face Database B.

- Dataset: $\left\{\boldsymbol{x}^{(n)}\right\}_{n=1}^{N}$.
- Each $\boldsymbol{x}^{(n)} \in \mathbb{R}^{d}$ is a vector representation of a $\sqrt{d} \times \sqrt{d}$ image.
- Task 1: Find a low-dimensional representation (This lecture)
- Task 2: Classify faces for a new image (Later)

Low Dimensional Representation

- Estimate the mean vector $\boldsymbol{\mu}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}$.
- Estimate the covariance matrix

$$
\begin{equation*}
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{n=1}^{N}\left(\boldsymbol{x}^{(n)}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}^{(n)}-\boldsymbol{\mu}\right)^{T} \tag{1}
\end{equation*}
$$

- Eigen-decomposition: $\boldsymbol{\Sigma}=\boldsymbol{U S} \boldsymbol{U}^{T}$.
- When a new image \boldsymbol{y} comes, estimate the coefficients:

$$
\alpha_{i}=\boldsymbol{u}_{i}^{T} \boldsymbol{y}
$$

- How many coefficients to use?

The Basis Vectors \boldsymbol{u}_{i}

Representing Faces

Discussion

What does PCA do?

- PCA is a tool for dimension reduction.
- It compresses a raw data vector $\boldsymbol{y} \in \mathbb{R}^{d}$ into a smaller feature vector $\alpha \in \mathbb{R}^{p}$.
- You can now do classification in \mathbb{R}^{p} instead of \mathbb{R}^{d}.

When will PCA fail?

- When data intrinsically does not have orthogonal projections
- For example, the distributions below

14 / 26

Outline

Feature Analysis

- Lecture 7 Principal Component Analysis (PCA)
- Lecture 8 Hand-Crafted and Deep Features

This Lecture

- PCA
- Low-dimensional Representation
- Geometric Interpretation
- Eigen-Face Problem
- Kernel-PCA
- Adding kernels to PCA
- Algorithm
- Examples

Motivation of Kernel PCA

- Data is originally difficult for PCA
- Find a nonlinear transform
- Idea: Leverage the kernel trick: $k\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}\right)=\left\langle\phi\left(\boldsymbol{x}^{(i)}\right), \phi\left(\boldsymbol{x}^{(j)}\right)\right\rangle$
- Example: Left is hard for PCA. After K-PCA, right has a clear principal component.

Kernel for Covariance Matrix

- Assume $\phi\left(\boldsymbol{x}^{(n)}\right)$ has zero mean. Then consdier the covariance matrix

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}\left(\boldsymbol{x}^{(n)}\right)^{T}
$$

- Replacing the outer products by feature transforms

$$
\boldsymbol{x}^{(n)} \quad \rightarrow \phi\left(\boldsymbol{x}^{(n)}\right)
$$

for some nonlinear transformation ϕ.

- If this can be done, then the covariance will become

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}^{(n)}\right) \phi\left(\boldsymbol{x}^{(n)}\right)^{T}
$$

- But this is not enough because a kernel needs an inner product

$$
k\left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(m)}\right)=\phi\left(\boldsymbol{x}^{(n)}\right)^{T} \phi\left(\boldsymbol{x}^{(m)}\right)
$$

Kernel Trick

- Recall: PCA solves the eigen-decomposition problem:

$$
\boldsymbol{\Sigma} \boldsymbol{u}=\lambda \boldsymbol{u}
$$

So we also need to consider \boldsymbol{u}.

- How about this candidate? (Recall: In Kernel Method we express the model parameter as a linear combination of the samples):

$$
\boldsymbol{u}=\sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)
$$

- Substitute this into the equation $\boldsymbol{\Sigma} \boldsymbol{u}=\lambda \boldsymbol{u}$:

$$
\underbrace{\left(\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}^{(n)}\right) \phi\left(\boldsymbol{x}^{(n)}\right)^{T}\right)}_{\boldsymbol{\Sigma}}(\underbrace{N}_{\boldsymbol{u}} \sum_{m=1}^{N} \alpha_{m} \phi\left(\boldsymbol{x}^{(m)}\right))=\lambda \underbrace{\left(\sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)\right)}_{\lambda \boldsymbol{u}}
$$

Kernel Trick

- This means

$$
\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}^{(n)}\right)\left(\sum_{m=1}^{N} \alpha_{m} \phi\left(\boldsymbol{x}^{(n)}\right)^{T} \phi\left(\boldsymbol{x}^{(m)}\right)\right)=\lambda \sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)
$$

- Recognizing $\phi\left(\boldsymbol{x}^{(n)}\right)^{T} \phi\left(\boldsymbol{x}^{(m)}\right)=k\left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(m)}\right)$:

$$
\frac{1}{N} \sum_{n=1}^{N} \phi\left(\boldsymbol{x}^{(n)}\right)\left(\sum_{m=1}^{N} \alpha_{n} k\left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(m)}\right)\right)=\lambda \sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)
$$

- Multiply $\phi\left(\boldsymbol{x}^{(\ell)}\right)^{T}$ on both sides.

$$
\frac{1}{N} \sum_{n=1}^{N} k\left(\boldsymbol{x}^{(\ell)}, \boldsymbol{x}^{(n)}\right)\left(\sum_{m=1}^{N} \alpha_{n} k\left(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(m)}\right)\right)=\lambda \sum_{n=1}^{N} \alpha_{n} k\left(\boldsymbol{x}^{(\ell)}, \boldsymbol{x}^{(n)}\right)
$$

- This is $\frac{1}{N} \boldsymbol{K}(\boldsymbol{K} \boldsymbol{\alpha})=\lambda \boldsymbol{K} \boldsymbol{\alpha}$.

Eigenvectors of K-PCA

- Rearrange the terms we have that $\boldsymbol{K}^{2} \boldsymbol{\alpha}=N \lambda \boldsymbol{K} \boldsymbol{\alpha}$.
- We can remove one of the \boldsymbol{K} 's since it only causes issues with zero-eigenvalues which are not important to us anyway. So we have

$$
\begin{equation*}
K \boldsymbol{\alpha}=N \lambda \boldsymbol{\alpha} \tag{2}
\end{equation*}
$$

- This is just another eigen-decomposition problem. We moved from $\boldsymbol{\Sigma} \boldsymbol{u}=\lambda \boldsymbol{u}$ to $\boldsymbol{K} \boldsymbol{\alpha}=N \lambda \boldsymbol{\alpha}$. Note that $\boldsymbol{\alpha}$ is the coefficients for \boldsymbol{u} :

$$
\boldsymbol{u}=\sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)=\boldsymbol{\Phi} \boldsymbol{\alpha}
$$

where $\boldsymbol{\Phi}=\left[\phi\left(\boldsymbol{x}^{(1)}\right), \ldots, \phi\left(\boldsymbol{x}^{(N)}\right)\right]$ is the transformed data matrix. Recall $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}=\boldsymbol{K}$ is the kernel matrix where

$$
[\boldsymbol{K}]_{i j}=\phi\left(\boldsymbol{x}^{(i)}\right)^{T} \phi\left(\boldsymbol{x}^{(j)}\right)
$$

Representation in Kernel Space

- If you run eigen-decomposition on \boldsymbol{K}, you will get p eigen-vectors $\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{p}$ where p is the number you choose.
- When a new sample \boldsymbol{x} comes, the j-th representation coefficient is

$$
\begin{equation*}
\beta_{j}=\phi(\boldsymbol{x})^{T} \boldsymbol{u}=\phi(\boldsymbol{x})^{T} \sum_{n=1}^{N} \alpha_{j n} \phi\left(\boldsymbol{x}^{(n)}\right)=\sum_{n=1}^{N} \alpha_{j n} k\left(\boldsymbol{x}, \boldsymbol{x}^{(n)}\right) \tag{3}
\end{equation*}
$$

- For the entire representation $\boldsymbol{\beta} \in \mathbb{R}^{p}$, we have

$$
\boldsymbol{\beta}=\left[\begin{array}{c}
---\boldsymbol{\alpha}_{1}^{T}--- \tag{4}\\
\vdots \\
---\boldsymbol{\alpha}_{p}^{T}---
\end{array}\right]\left[\begin{array}{c}
k\left(\boldsymbol{x}, \boldsymbol{x}^{(1)}\right) \\
k\left(\boldsymbol{x}, \boldsymbol{x}^{(2)}\right) \\
\vdots \\
k\left(\boldsymbol{x}, \boldsymbol{x}^{(N)}\right)
\end{array}\right]
$$

where $\boldsymbol{\alpha}_{j}=\left[\alpha_{j 1}, \ldots, \alpha_{i N}\right]^{T}$.

Example

Here is an example taken from Wang (2012) Kernel Principal Component Analysis and its Applications https://arxiv.org/abs/1207. 3538

Example

Here is an example taken from Wang (2012) Kernel Principal Component Analysis and its Applications https://arxiv.org/abs/1207.3538

K-PCA with polynomial

K-PCA with Gaussian

Reading List

PCA Tutorial

- Jonathon Shlens "A Tutorial on Principal Component Analysis", https://arxiv.org/pdf/1404.1100.pdf

PCA: Should We Remove Mean?

- Paul Honeine, "An eigenanalysis of data centering in machine learning", https://arxiv.org/pdf/1407.2904.pdf
- Does mean centering or feature scaling affect a Principal Component Analysis? https://sebastianraschka.com/faq/docs/pca-scaling.html

K-PCA

- Quan Wang (2012), "Kernel Principal Component Analysis and its Applications", https://arxiv.org/abs/1207. 3538
- Schölkopf et al. (2005), "Kernel Principal Component Analysis", https://link.springer.com/chapter/10.1007/BFb0020217

Appendix

Proof of Eigenvalue Problem

We want to prove that the solution to the problem

$$
\widehat{\boldsymbol{v}}=\underset{\|\boldsymbol{v}\|_{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{\top} \boldsymbol{\Sigma} \boldsymbol{v}
$$

is the eigenvector of the matrix $\boldsymbol{\Sigma}$. To show that, we first write down the Lagrangian:

$$
L(\boldsymbol{v}, \lambda)=\boldsymbol{v}^{T} \boldsymbol{\Sigma} \boldsymbol{v}-\lambda\left(\|\boldsymbol{v}\|^{2}-1\right)
$$

Take derivative w.r.t. v and setting to zero yields

$$
\nabla_{\boldsymbol{v}} L(\boldsymbol{v}, \lambda)=2 \boldsymbol{\Sigma} \boldsymbol{v}-2 \lambda \boldsymbol{v}=\mathbf{0}
$$

This is equivalent to $\boldsymbol{\Sigma} \boldsymbol{v}=\lambda \boldsymbol{v}$. So if $\boldsymbol{\Sigma}=\boldsymbol{U S} \boldsymbol{U}^{T}$, then by letting $\boldsymbol{v}=\boldsymbol{u}_{i}$ and $\lambda=s_{i}$ we can satisfy the condition since
$\boldsymbol{\Sigma} \boldsymbol{u}_{i}=\boldsymbol{U S} \boldsymbol{U}^{T} \boldsymbol{u}_{i}=\boldsymbol{U S} \boldsymbol{e}_{i}=s_{i} \boldsymbol{u}_{i}$.

