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Overview

Supervised Learning for Classification
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Outline

Feature Analysis

Lecture 7 Principal Component Analysis (PCA)

Lecture 8 Hand-Crafted and Deep Features
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Low-Dimensional Representation

Consider a set of data point {x (1), x (2), . . . , x (N)}
These data points are living in a high dimensional space x (n) ∈ Rd

Find a low dimensional representation in Rp where p < d

Equivalent to finding the principal components v1, . . . , vp such that

x (n) ≈
p∑

i=1

α
(n)
i v i

Then every x (n) ∈ Rd can be represented using α(n) ∈ Rp.
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One Sample Analysis

Consider a simpler problem: One data point x and one direction v .
We want to find a direction v̂ and a scalar α̂ such that

(v̂ , α̂) = argmin
‖v‖2=1,α

∥∥∥∥∥∥
 |x
|

− α
 |v
|

∥∥∥∥∥∥
2

First assume v is available. Then take derivative w.r.t. α:

2vT (x − αv) = 0 ⇒ α = vTx .
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One Sample Analysis

Substitute α = xTv into the optimization
Then the optimization becomes

argmin
‖v‖2=1

‖x − αv‖2 = argmin
‖v‖2=1

{
xTx − 2αxTv + α2

���vTv
}

= argmin
‖v‖2=1

{
− 2αxTv + α2

}
= argmin
‖v‖2=1

{
− 2(xTv)xTv + (xTv)2

}
= argmax
‖v‖2=1

{
vTxxTv

}
Take expectation on both sides:

argmin
‖v‖2=1

Ex‖x − αv‖2 = argmax
‖v‖2=1

vTEx

{
xxT

}
v
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Eigenvalue Problem

Let Σ
def
= E[xxT ].

Then the optimization problem is

argmax
‖v‖2=1

vTΣv .

The solution to this problem is the eigenvalue and eigenvectors of Σ.

Theorem

Let Σ be a d × d matrix with eigen-decomposition Σ = USUT . Then,
the optimization

v̂ = argmax
‖v‖2=1

vTΣv .

has a solution v̂ = u i for any i = 1, . . . , d .

Proof: See Appendix.
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Finite Samples

When there are N training samples, the optimization is

argmin
‖v‖2=1

1

N

N∑
n=1

‖x (n) − α(n)v‖2︸ ︷︷ ︸
=E[‖x−αv‖2], N→∞

= argmax
‖v‖2=1

vT

{
1

N

N∑
n=1

x (n)(x (n))T
}

︸ ︷︷ ︸
=E[xxT ], N→∞

v

In practice, given x (1), . . . , x (N), we approximate Σ by its empirical
estimate

Σ ≈ 1

N

N∑
n=1

x (n)(x (n))T

You can also remove the mean vectors: µ = 1
N

∑N
n=1 x (n):

Σ ≈ 1

N

N∑
n=1

(x (n) − µ)(x (n) − µ)T
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Statistical Interpretation

The optimization

argmax
‖v‖2=1

vTΣv .

asks us to find a principal direction that maximizes the variance.

Belief: Large variance = “signal”, small variance = “noise”
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The Eigenface Problem

Figure: The extended Yale Face Database B.

Dataset: {x (n)}Nn=1.

Each x (n) ∈ Rd is a vector representation of a
√
d ×
√
d image.

Task 1: Find a low-dimensional representation (This lecture)

Task 2: Classify faces for a new image (Later)
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Low Dimensional Representation

Estimate the mean vector µ = 1
N

∑N
n=1 x (n).

Estimate the covariance matrix

Σ =
1

N

N∑
n=1

(x (n) − µ)(x (n) − µ)T . (1)

Eigen-decomposition: Σ = USUT .
When a new image y comes, estimate the coefficients:

αi = uT
i y

How many coefficients to use?
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The Basis Vectors u i
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Representing Faces
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Discussion

What does PCA do?

PCA is a tool for dimension reduction.

It compresses a raw data vector y ∈ Rd into a smaller feature vector
α ∈ Rp.

You can now do classification in Rp instead of Rd .

When will PCA fail?

When data intrinsically does not have orthogonal projections

For example, the distributions below
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Motivation of Kernel PCA

Data is originally difficult for PCA

Find a nonlinear transform

Idea: Leverage the kernel trick: k(x (i), x (j)) = 〈φ(x (i)), φ(x (j))〉
Example: Left is hard for PCA. After K-PCA, right has a clear
principal component.
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Kernel for Covariance Matrix

Assume φ(x (n)) has zero mean. Then consdier the covariance matrix

Σ =
1

N

N∑
n=1

x (n)(x (n))T .

Replacing the outer products by feature transforms

x (n) → φ(x (n)),

for some nonlinear transformation φ.

If this can be done, then the covariance will become

Σ =
1

N

N∑
n=1

φ(x (n))φ(x (n))T .

But this is not enough because a kernel needs an inner product

k(x (n), x (m)) = φ(x (n))Tφ(x (m)).
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Kernel Trick

Recall: PCA solves the eigen-decomposition problem:

Σu = λu

So we also need to consider u.

How about this candidate? (Recall: In Kernel Method we express the
model parameter as a linear combination of the samples):

u =
N∑

n=1

αnφ(x (n)).

Substitute this into the equation Σu = λu:(
1

N

N∑
n=1

φ(x (n))φ(x (n))T

)
︸ ︷︷ ︸

Σ

(
N∑

m=1

αmφ(x (m))

)
︸ ︷︷ ︸

u

= λ

(
N∑

n=1

αnφ(x (n))

)
︸ ︷︷ ︸

λu
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Kernel Trick

This means

1

N

N∑
n=1

φ(x (n))

(
N∑

m=1

αmφ(x (n))Tφ(x (m))

)
= λ

N∑
n=1

αnφ(x (n))

Recognizing φ(x (n))Tφ(x (m)) = k(x (n), x (m)):

1

N

N∑
n=1

φ(x (n))

(
N∑

m=1

αnk(x (n), x (m))

)
= λ

N∑
n=1

αnφ(x (n))

Multiply φ(x (`))T on both sides.

1

N

N∑
n=1

k(x (`), x (n))

(
N∑

m=1

αnk(x (n), x (m))

)
= λ

N∑
n=1

αnk(x (`), x (n))

This is 1
NK (Kα) = λKα.
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Eigenvectors of K-PCA

Rearrange the terms we have that K 2α = NλKα.

We can remove one of the K ’s since it only causes issues with
zero-eigenvalues which are not important to us anyway. So we have

Kα = Nλα. (2)

This is just another eigen-decomposition problem. We moved from
Σu = λu to Kα = Nλα. Note that α is the coefficients for u:

u =
N∑

n=1

αnφ(x (n)) = Φα,

where Φ = [φ(x (1)), . . . , φ(x (N))] is the transformed data matrix.
Recall ΦΦT = K is the kernel matrix where

[K ]ij = φ(x (i))Tφ(x (j)).
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Representation in Kernel Space

If you run eigen-decomposition on K , you will get p eigen-vectors
α1, . . . ,αp where p is the number you choose.

When a new sample x comes, the j-th representation coefficient is

βj = φ(x)Tu = φ(x)T
N∑

n=1

αjnφ(x (n)) =
N∑

n=1

αjnk(x , x (n)). (3)

For the entire representation β ∈ Rp, we have

β =

−−−α
T
1 −−−
...

−−−αT
p −−−



k(x , x (1))

k(x , x (2))
...

k(x , x (N))

 (4)

where αj = [αj1, . . . , αiN ]T .
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Example

Here is an example taken from Wang (2012) Kernel Principal Component
Analysis and its Applications https://arxiv.org/abs/1207.3538

Original Data Linear PCA
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Example

Here is an example taken from Wang (2012) Kernel Principal Component
Analysis and its Applications https://arxiv.org/abs/1207.3538

K-PCA with polynomial K-PCA with Gaussian
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Reading List

PCA Tutorial

Jonathon Shlens “A Tutorial on Principal Component Analysis”,
https://arxiv.org/pdf/1404.1100.pdf

PCA: Should We Remove Mean?

Paul Honeine, “An eigenanalysis of data centering in machine
learning”, https://arxiv.org/pdf/1407.2904.pdf

Does mean centering or feature scaling affect a Principal Component
Analysis?
https://sebastianraschka.com/faq/docs/pca-scaling.html

K-PCA

Quan Wang (2012), “Kernel Principal Component Analysis and its
Applications”, https://arxiv.org/abs/1207.3538

Schölkopf et al. (2005), “Kernel Principal Component Analysis”,
https://link.springer.com/chapter/10.1007/BFb0020217
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Appendix
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Proof of Eigenvalue Problem

We want to prove that the solution to the problem

v̂ = argmax
‖v‖2=1

vTΣv .

is the eigenvector of the matrix Σ. To show that, we first write down the
Lagrangian:

L(v , λ) = vTΣv − λ(‖v‖2 − 1)

Take derivative w.r.t. v and setting to zero yields

∇vL(v , λ) = 2Σv − 2λv = 0.

This is equivalent to Σv = λv . So if Σ = USUT , then by letting v = u i

and λ = si we can satisfy the condition since
Σu i = USUTu i = USe i = siu i .
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