ECE 595: Machine Learning I
Lecture 05 Gradient Descent

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Outline

Lecture 3

Extract Feature

$\phi(x)$

Lecture 1

prediction

$g(\phi(x))$

loss

$L(g(\phi(x)), y)$

Lecture 2

Optimization method

Lecture 4, 5

Data

$\phi(\cdot)$

$\phi(x)$
Mathematical Background
- Lecture 4: Intro to Optimization
- Lecture 5: Gradient Descent

Lecture 5: Gradient Descent
- Gradient Descent
 - Descent Direction
 - Step Size
 - Convergence
- Stochastic Gradient Descent
 - Difference between GD and SGD
 - Why does SGD work?
Gradient Descent

The algorithm:

$$x^{(t+1)} = x^{(t)} - \alpha^{(t)} \nabla f(x^{(t)}), \quad t = 0, 1, 2, \ldots,$$

where $\alpha^{(t)}$ is called the **step size**.
Why is the direction $-\nabla f(x)$?

- Recall (Lecture 4): If x^* is optimal, then
 \[
 \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[f(x^* + \epsilon d) - f(x^*) \right] = \nabla f(x^*)^T d \geq 0, \ \forall d
 \]
 \[
 \implies \nabla f(x^*)^T d \geq 0, \ \forall d
 \]

- But if $x^{(t)}$ is not optimal, then we want
 \[
 f(x^{(t)} + \epsilon d) \leq f(x^{(t)})
 \]

- So,
 \[
 \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left[f(x^{(t)} + \epsilon d) - f(x^{(t)}) \right] = \nabla f(x^{(t)})^T d \leq 0, \ \text{for some } d
 \]\n \[
 \implies \nabla f(x^{(t)})^T d \leq 0
 \]
Descent Direction

Pictorial illustration:
- $\nabla f(x)$ is **perpendicular** to the contour.
- A search direction d can either be on the positive side $\nabla f(x)^T d \geq 0$ or negative side $\nabla f(x)^T d < 0$.
- Only those on the negative side can reduce the cost.
- All such d’s are called the **descent directions**.
The Steepest d

Previous slide: If $x^{(t)}$ is not optimal yet, then some d will give

$$\nabla f(x^{(t)})^T d \leq 0.$$

So, let us make $\nabla f(x^{(t)})^T$ as negative as possible.

$$d^{(t)} = \operatorname{argmin}_{\|d\|_2 = \delta} \nabla f(x^{(t)})^T d,$$

We need δ to control the magnitude; Otherwise d is unbounded.

The solution is

$$d^{(t)} = -\nabla f(x^{(t)})$$

Why? By Cauchy Schwarz,

$$\nabla f(x^{(t)})^T d \geq -\|\nabla f(x^{(t)})\|_2 \|d\|_2.$$

Minimum attained when $d = -\nabla f(x^{(t)})$.

Set $\delta = \|\nabla f(x^{(t)})\|_2$.

Steepest Descent Direction

Pictorial illustration:
- Put a ball surrounding the current point.
- All d's inside the ball are feasible.
- Pick the one that minimizes $\nabla f(x)^T d$.
- This direction must be parallel (but opposite sign) to $\nabla f(x)$.
Step Size

The algorithm:

\[x^{(t+1)} = x^{(t)} - \alpha^{(t)} \nabla f(x^{(t)}), \quad t = 0, 1, 2, \ldots, \]

where \(\alpha^{(t)} \) is called the step size.

1. Fixed step size

\[\alpha^{(t)} = \alpha. \]

2. Exact line search

\[\alpha^{(t)} = \arg\min_{\alpha} f\left(x^{(t)} + \alpha d^{(t)}\right), \]

E.g., if \(f(x) = \frac{1}{2} x^T H x + c^T x \), then

\[\alpha^{(t)} = -\frac{\nabla f(x^{(t)})^T d^{(t)}}{d^{(t)^T H d^{(t)}}}. \]

3. Inexact line search:

Amijo / Wolfe conditions. See Nocedal-Wright Chapter 3.1.
Convergence

Let x^* be the global minimizer. Assume the followings:

- Assume f is twice differentiable so that $\nabla^2 f$ exist.
- Assume $0 \leq \lambda_{\text{min}} I \preceq \nabla^2 f(x) \preceq \lambda_{\text{max}} I$ for all $x \in \mathbb{R}^n$
- Run gradient descent with exact line search.

Then, (Nocedal-Wright Chapter 3, Theorem 3.3)

$$f(x^{(t+1)}) - f(x^*) \leq \left(1 - \frac{\lambda_{\text{min}}}{\lambda_{\text{max}}} \right)^2 \left(f(x^{(t)}) - f(x^*) \right)$$

$$\leq \left(1 - \frac{\lambda_{\text{min}}}{\lambda_{\text{max}}} \right)^4 \left(f(x^{(t-1)}) - f(x^*) \right)$$

$$\leq \vdots$$

$$\leq \left(1 - \frac{\lambda_{\text{min}}}{\lambda_{\text{max}}} \right)^{2t} \left(f(x^{(1)}) - f(x^*) \right).$$

Thus, $f(x^{(t)}) \to f(x^*)$ as $t \to \infty$.
Understanding Convergence

- Gradient descent can be viewed as **successive approximation**.
- Approximate the function as

\[f(x^t + d) \approx f(x^t) + \nabla f(x^t)^T d + \frac{1}{2\alpha} \|d\|^2. \]

- We can show that the \(d \) that minimizes \(f(x^t + d) \) is \(d = -\alpha \nabla f(x^t) \).
- This suggests: Use a **quadratic function** to locally approximate \(f \).
- Converge when curvature \(\alpha \) of the approximation is not too big.
Advice on Gradient Descent

- Gradient descent is useful because
 - Simple to implement (compared to ADMM, FISTA, etc)
 - Low computational cost per iteration (no matrix inversion)
 - Requires only first order derivative (no Hessian)
 - Gradient is available in deep networks (via back propagation)

- Most machine learning has built-in (stochastic) gradient descents

- Welcome to implement your own, but you need to be careful
 - Convex non-differentiable problems, e.g., ℓ_1-norm
 - Non-convex problem, e.g., ReLU in deep network
 - Trap by local minima
 - Inappropriate step size, a.k.a. learning rate

- Consider more “transparent” algorithms such as CVX when
 - Formulating problems. No need to worry about algorithm.
 - Trying to obtain insights.
Outline

Mathematical Background

- Lecture 4: Intro to Optimization
- Lecture 5: Gradient Descent

Lecture 5: Gradient Descent

- Gradient Descent
 - Descent Direction
 - Step Size
 - Convergence
- Stochastic Gradient Descent
 - Difference between GD and SGD
 - Why does SGD work?
Stochastic Gradient Descent

Most loss functions in machine learning problems are separable:

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(g_\theta(x^n), y^n) = \frac{1}{N} \sum_{n=1}^{N} J_n(\theta).$$ \hspace{1cm} (1)

For example,

- **Square-loss:**

 $$J(\theta) = \sum_{n=1}^{N} (g_\theta(x^n) - y^n)^2$$

- **Cross-entropy loss:**

 $$J(\theta) = - \sum_{n=1}^{N} \left\{ y^n \log g_\theta(x^n) + (1 - y^n) \log(1 - g_\theta(x^n)) \right\}$$

- **Logistic loss:**

 $$J(\theta) = \sum_{n=1}^{N} \log(1 + e^{-y^n \theta^T x^n})$$
Full Gradient VS Partial Gradient

Vanilla gradient descent:

\[\theta^{t+1} = \theta^t - \eta^t \nabla J(\theta^t) \] \hspace{1cm} \text{(2)}

The full gradient of the loss is

\[\nabla J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \nabla J_n(\theta) \] \hspace{1cm} \text{(3)}

Stochastic gradient descent:

\[\nabla J(\theta) \approx \frac{1}{|\mathcal{B}|} \sum_{n \in \mathcal{B}} \nabla J_n(\theta) \] \hspace{1cm} \text{(4)}

where \(\mathcal{B} \subseteq \{1, \ldots, N\} \) is a random subset. \(|\mathcal{B}| = \text{batch size}\).
SGD Algorithm

Algorithm (Stochastic Gradient Descent)

1. Given \(\{(x^n, y^n) \mid n = 1, \ldots, N\} \).
2. Initialize \(\theta \) (zero or random)
3. For \(t = 1, 2, 3, \ldots \)
 - Draw a random subset \(B \subseteq \{1, \ldots, N\} \).
 - Update
 \[
 \theta^{t+1} = \theta^t - \eta^t \frac{1}{|B|} \sum_{n \in B} \nabla J_n(\theta) \tag{5}
 \]

 If \(|B| = 1 \), then use only one sample at a time.
 The approximate gradient is **unbiased**: (See Appendix for Proof)
 \[
 \mathbb{E} \left[\frac{1}{|B|} \sum_{n \in B} \nabla J_n(\theta) \right] = \nabla J(\theta).
 \]
Interpreting SGD

- Just showed that the SGD step is unbiased:
 \[\mathbb{E} \left[\frac{1}{|B|} \sum_{n \in B} \nabla J_n(\theta) \right] = \nabla J(\theta). \]

- Unbiased gradient implies that each update is gradient + zero-mean noise.

- Step size: SGD with constant step size does not converge.
- If \(\theta^* \) is a minimizer, then \(J(\theta^*) = \frac{1}{N} \sum_{n=1}^{N} J_n(\theta^*) = 0 \). But
 \[\frac{1}{|B|} \sum_{n \in B} J_n(\theta^*) \neq 0, \quad \text{since } B \text{ is a subset}. \]

- Typical strategy: Start with large step size and gradually decrease: \(\eta^t \to 0 \), e.g., \(\eta^t = t^{-a} \) for some constant \(a \).
Perspectives of SGD

Classical optimization literature have the following observations.

- Compared to GD in **convex** problems:
 - SGD offers a **trade-off** between accuracy and efficiency
 - More iterations
 - Less gradient evaluation per iteration
 - Noise is a by-product

Recent studies of SGD for **non-convex** problems found that

- SGD for training deep neural networks works
- SGD finds solution faster
- SGD find a better local minima
- Noise matters
GD compared to SGD

Convex

Non-Convex
Smoothing the Landscape

Analyzing SGD is an active research topic. Here is one by Kleinberg et al. (https://arxiv.org/pdf/1802.06175.pdf ICML 2018)

- The SGD step can be written as GD + noise:

\[
x^{t+1} = x^t - \eta(\nabla f(x^t) + w^t)
= x^t - \eta \nabla f(x^t) - \eta w^t.
\]

- \(y^t\) is the “ideal” location returned by GD.
- Let us analyze \(y^{t+1}\):

\[
y^{t+1} \overset{\text{def}}{=} x^{t+1} - \eta \nabla f(x^{t+1})
= (y^t - \eta w^t) - \eta \nabla f(y^t - \eta w^t)
\]

- Assume \(\mathbb{E}[w] = 0\), then

\[
\mathbb{E}[y^{t+1}] = y^t - \eta \nabla \mathbb{E}[f(y^t - \eta w^t)]
\]
Smoothing the Landscape

- Let us look at $\mathbb{E}[f(y^t - \eta w^t)]$:

$$
\mathbb{E}[f(y - \eta w)] = \int f(y - \eta w)p(w) \, dw,
$$

where $p(w)$ is the distribution of w.

- $\int f(y - \eta w)p(w) \, dw$ is the convolution between f and p.

- $p(w) \geq 0$ for all w, so the convolution always smooths the function.

- Learning rate controls the smoothness

- Too small: Under-smooth. You have not yet escaped from bad local minimum.

- Too large: Over-smooth. You may miss a local minimum.
Smoothing the Landscape

- Original function f
- f convolved with $[-0.15, 0.15]$
- f convolved with $[-0.3, 0.3]$
- f convolved with $[-0.6, 0.6]$

- Gradient Descent without noise
- Gradient Descent with noise=0.15
- Gradient Descent with noise=0.3
- Gradient Descent with noise=0.6

- GD, noise=0.3, init=[-3, 3]
- GD, noise=0.15, init=[-1.5, 1.5]
- GD, noise=0.05, init=[-0.5, 0.5]
- GD, noise=0.01, init=[-0.3, 0.3]
Reading List

Gradient Descent

Stochastic Gradient Descent
Appendix
Proof of Unbiasedness of SGD gradient

Lemma

If n *is a random variable with uniform distribution over* $\{1, \ldots, N\}$, *then*

$$
\mathbb{E} \left[\frac{1}{|B|} \sum_{n \in B} \nabla J_n(\theta) \right] = \nabla J(\theta).
$$

Denote the density function of n as $p(n) = 1/N$. Then,

$$
\mathbb{E} \left[\frac{1}{|B|} \sum_{n \in B} \nabla J_n(\theta) \right] = \frac{1}{|B|} \sum_{n \in B} \mathbb{E} [\nabla J_n(\theta)] = \frac{1}{|B|} \sum_{n \in B} \left\{ \sum_{n=1}^{N} J_n(\theta) p(n) \right\}
$$

$$
= \frac{1}{|B|} \sum_{n \in B} \left\{ \frac{1}{N} \sum_{n=1}^{N} J_n(\theta) \right\} = \frac{1}{|B|} \sum_{n \in B} \nabla J(\theta) = \nabla J(\theta).
$$
Q&A 1: What is momentum method?

- The momentum method was originally proposed by Polyak (1964).
- Momentum method says:
 \[
 x^{t+1} = x^t - \alpha \left[\beta g^{t-1} + (1 - \beta) g^t \right],
 \]
 where \(g^t = \nabla f(x^t) \), and \(0 < \beta < 1 \) is the damping constant.
- Momentum method can be applied to both gradient descent and stochastic gradient descent.
- A variant is the Nesterov accelerated gradient (NAG) method (1983).
- Importance of NAG is elaborated by Sutskever et al. (2013).
- The key idea of NAG is to write \(x^{t+1} \) as a linear combination of \(x^t \) and the span of the past gradients.
- Yurii Nesterov proved that such combination is the best one can do with first order methods.
Q&A 1: What is momentum method?

Here are some references on momentum method.

- Sutskever et al. (2013), “On the importance of initialization and momentum in deep learning”,

- UIC Lecture Note
 https://www2.cs.uic.edu/~zhangx/teaching/agm.pdf

- Cornell Lecture Note

- Yurii Nesterov, “Introductory Lectures on Convex Optimization”, 2003. (See Assumption 2.1.4 and discussions thereafter)

 https://distill.pub/2017/momentum/
Q&A 2: With exact line search, will we get to a minimum in one step?

- No. Exact line search only allows you to converge faster. It does not guarantee convergence in one step.
- Here is an example. The function is called the rosenbrock function.
Q&A 3: Any example of gradient descent?

- Consider the loss function

\[J(\theta) = \frac{1}{2} \| A\theta - y \|^2 \]

- Then the gradient is

\[\nabla J(\theta) = A^T (A\theta - y) \]

- So the gradient descent step is

\[\theta^{t+1} = \theta^{t} + \eta A^T (A\theta^{t} - y). \]

- Since this is a quadratic equation, you can find the exact line search step size (assume \(d = -\nabla f(\theta) \)):

\[\eta = -\|d\|^2 / (d^T A^T A d). \]
Q&A 4: In finding the steepest direction, why is δ unimportant?

- The constraint $\|d\| = \delta$ is necessary for minimizing $\nabla f(x)^T d$. Without the constraint, this problem is unbounded below and the solution is $-\infty$ times whatever direction d that lives on the negative half plane of ∇f.
- For any δ, the solution (according to Cauchy Schwarz inequality), is

$$d = -\delta \frac{\nabla f(x)}{\|\nabla f(x)\|}.$$

You can show that this d minimizes $\nabla f(x)^T d$ and satisfies $\|d\| = \delta$.

- Now, if we use this d in the gradient descent step, the step size α will compensate for the δ.
- So we can just choose $\delta = 1$ and the above derivation will still work.
Q&A 5: What is a good batch size for SGD?

There is no definite answer. Generally you need to look at the validation curve to determine if you need to increase/decrease the mini-batch size. Here are some suggestions in the literature.

 \[\text{[batch size]} \text{ is typically chosen between 1 and a few hundreds, e.g. } \text{[batch size]} = 32 \text{ is a good default value, with values above 10 taking advantage of the speedup of matrix-matrix products over matrix-vector products.}\]

 \text{The presented results confirm that using small batch sizes achieves the best training stability and generalization performance, for a given computational cost, across a wide range of experiments. In all cases the best results have been obtained with batch sizes } m = 32 \text{ or smaller, often as small as } m = 2 \text{ or } m = 4.