ECE595 / STAT598: Machine Learning I
Course Overview

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering
Purdue University
Machine Learning: Your Interpretation?

Elements of Learning?
Elements of Learning?

- Data
Elements of Learning?

- Data
- Computer
Elements of Learning?

- Data
- Computer
- Algorithm
What is Learning? What is NOT learning?
What is Learning? What is NOT learning?

You are given a bag of US coins.

Your task: Build a classifier.

Four classes: Penny, Nickel, Dime, Quarter.
What is Learning? What is NOT learning?

- You are given a bag of US coins.
- Your task: Build a classifier.
- Four classes: Penny, Nickel, Dime, Quarter.
Approach 1: Learning

You measure mass and size. Put each coin to its class. Plot a 2D histogram. Create the classifier.
Approach 1: Learning

You measure mass and size.
Approach 1: Learning

You measure mass and size.

Put each coin to its class. Plot a 2D histogram.
Approach 1: Learning

- You measure mass and size.
- Put each coin to its class. Plot a 2D histogram.
- Create the classifier.
Approach 2: Design

You go to United States Mint to ask for the ideal mass and size of the coins. You ask them to give you the measurement error. Plot the 2D distribution. Create the classifier.
Approach 2: Design

- You go to United States Mint to ask ideal mass and size of the coins.
Approach 2: Design

- You go to United States Mint to ask ideal mass and size of the coins.
- You ask them to give you the measurement error. Plot 2D distribution.
Approach 2: Design

- You go to United States Mint to ask ideal mass and size of the coins.
- You ask them to give you the measurement error. Plot 2D distribution.
- Create the classifier.
Which one fits learning? Which one fits design?

- Determining the age at which a particular medical test should be performed.
Which one fits learning? Which one fits design?

- Determining the age at which a particular medical test should be performed.
- Classifying numbers into primes and non-primes.
Which one fits learning? Which one fits design?

- Determining the age at which a particular medical test should be performed.
- Classifying numbers into primes and non-primes.
- Detecting potential fraud in credit card charges.
Which one fits learning? Which one fits design?

- Determining the age at which a particular medical test should be performed.
- Classifying numbers into primes and non-primes.
- Detecting potential fraud in credit card charges.
- Determining the time it would take a falling object to hit the ground.
Which one fits learning? Which one fits design?

- Determining the age at which a particular medical test should be performed.
- Classifying numbers into primes and non-primes.
- Detecting potential fraud in credit card charges.
- Determining the time it would take a falling object to hit the ground.
- Determining the optimal cycle for traffic lights in a busy intersection.
Machine Learning Model

- Machine Learning Model
- Data points x_1, \ldots, x_N
- Labels y_1, \ldots, y_N
- Where does a data point x_n come from?
- How is a label y_n defined?
- What do we mean by a learning algorithm?
- What is a classifier?
- How to evaluate a classifier?
Machine Learning Model

- Data points x_1, \ldots, x_N.

Where does a data point x_n come from?

How is a label y_n defined?

What do we mean by a learning algorithm?

What is a classifier?

How to evaluate a classifier?
Machine Learning Model

- Data points x_1, \ldots, x_N.
- Labels y_1, \ldots, y_N.

Where does a data point x_n come from?
How is a label y_n defined?
What do we mean by a learning algorithm?
What is a classifier? How to evaluate a classifier?
Machine Learning Model

- Data points x_1, \ldots, x_N.
- Labels y_1, \ldots, y_N.

Where does a data point x_n come from?
Machine Learning Model

- Data points x_1, \ldots, x_N.
- Labels y_1, \ldots, y_N.

- Where does a data point x_n come from?
- How is a label y_n defined?
Machine Learning Model

- Data points x_1, \ldots, x_N.
- Labels y_1, \ldots, y_N.

- Where does a data point x_n come from?
- How is a label y_n defined?
- What do we mean by a learning algorithm?
Machine Learning Model

- Data points x_1, \ldots, x_N.
- Labels y_1, \ldots, y_N.

Where does a data point x_n come from?
How is a label y_n defined?
What do we mean by a learning algorithm?
What is a classifier?
Machine Learning Model

- Data points x_1, \ldots, x_N.
- Labels y_1, \ldots, y_N.

- Where does a data point x_n come from?
- How is a label y_n defined?
- What do we mean by a learning algorithm?
- What is a classifier?
- How to evaluate a classifier?
See Learning from Data (Chapter 1).
Learning Algorithm

1. Extract Feature
2. Prediction
3. Loss
4. Optimization Method
5. Ground Truth

Data $\rightarrow \phi(x) \rightarrow \text{prediction} \rightarrow g(\phi(x)) \rightarrow y \rightarrow L(g(\phi(x)), y)$
Types of Learning

- Supervised Learning: Labels available.
- Unsupervised Learning: No label.
Outline of ECE 595

Part 1: Mathematical Background
(2 weeks)
Linear Regression and Optimization
Please review linear algebra, probability, optimization in the Tutorial Note.

Part 2: Classification
(5 weeks)
Methods to train linear classifiers
Feature analysis, Geometry, Bayesian decision rule, logistic regression, perceptron algorithm, support vector machine

Part 3: Handling Uncertainty
(3 weeks)
Imperfect data: noisy label, unbalanced data, missing data, knowledge transfer
Robustness study: adversarial attack and defense

Part 4: Learning Theory
(5 weeks)
Evaluation of a classifier.
Feasibility of learning, VC dimension, bias-variance, validation
Part 1: Mathematical Background (2 weeks)
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)

- **Part 2: Classification** (5 weeks)
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
- **Part 2: Classification** (5 weeks)
- **Part 3: Handling Uncertainty** (3 weeks)
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
- **Part 2: Classification** (5 weeks)
- **Part 3: Handling Uncertainty** (3 weeks)
- **Part 4: Learning Theory** (5 weeks)
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
 - Linear Regression and Optimization

- **Part 2: Classification** (5 weeks)
 - Methods to train linear classifiers
 - Feature analysis, Geometry, Bayesian decision rule, logistic regression, perceptron algorithm, support vector machine

- **Part 3: Handling Uncertainty** (3 weeks)
 - Imperfect data: noisy label, unbalanced data, missing data, knowledge transfer
 - Robustness study: adversarial attack and defense

- **Part 4: Learning Theory** (5 weeks)
 - Evaluation of a classifier.
 - Feasibility of learning, VC dimension, bias-variance, validation
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
 - Linear Regression and Optimization
 - Please review linear algebra, probability, optimization in the Tutorial Note.

- **Part 2: Classification** (5 weeks)
 - Methods to train linear classifiers
 - Feature analysis, Geometry, Bayesian decision rule, logistic regression, perceptron algorithm, support vector machine

- **Part 3: Handling Uncertainty** (3 weeks)
 - Imperfect data: noisy label, unbalanced data, missing data, knowledge transfer
 - Robustness study: adversarial attack and defense

- **Part 4: Learning Theory** (5 weeks)
 - Evaluation of a classifier.
 - Feasibility of learning, VC dimension, bias-variance, validation
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
 - Linear Regression and Optimization
 - Please review linear algebra, probability, optimization in the Tutorial Note.

- **Part 2: Classification** (5 weeks)
 - Methods to train linear classifiers

- **Part 3: Handling Uncertainty** (3 weeks)

- **Part 4: Learning Theory** (5 weeks)
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
 - Linear Regression and Optimization
 - Please review linear algebra, probability, optimization in the Tutorial Note.
- **Part 2: Classification** (5 weeks)
 - Methods to train linear classifiers
 - Feature analysis, Geometry, Bayesian decision rule, logistic regression, perceptron algorithm, support vector machine
- **Part 3: Handling Uncertainty** (3 weeks)
- **Part 4: Learning Theory** (5 weeks)
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
 - Linear Regression and Optimization
 - Please review linear algebra, probability, optimization in the Tutorial Note.

- **Part 2: Classification** (5 weeks)
 - Methods to train linear classifiers
 - Feature analysis, Geometry, Bayesian decision rule, logistic regression, perceptron algorithm, support vector machine

- **Part 3: Handling Uncertainty** (3 weeks)
 - Imperfect data: noisy label, unbalanced data, missing data, knowledge transfer

- **Part 4: Learning Theory** (5 weeks)
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
 - Linear Regression and Optimization
 - Please review linear algebra, probability, optimization in the Tutorial Note.

- **Part 2: Classification** (5 weeks)
 - Methods to train linear classifiers
 - Feature analysis, Geometry, Bayesian decision rule, logistic regression, perceptron algorithm, support vector machine

- **Part 3: Handling Uncertainty** (3 weeks)
 - Imperfect data: noisy label, unbalanced data, missing data, knowledge transfer
 - Robustness study: adversarial attack and defense

- **Part 4: Learning Theory** (5 weeks)
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
 - Linear Regression and Optimization
 - Please review linear algebra, probability, optimization in the Tutorial Note.

- **Part 2: Classification** (5 weeks)
 - Methods to train linear classifiers
 - Feature analysis, Geometry, Bayesian decision rule, logistic regression, perceptron algorithm, support vector machine

- **Part 3: Handling Uncertainty** (3 weeks)
 - Imperfect data: noisy label, unbalanced data, missing data, knowledge transfer
 - Robustness study: adversarial attack and defense

- **Part 4: Learning Theory** (5 weeks)
 - Evaluation of a classifier.
Outline of ECE 595

- **Part 1: Mathematical Background** (2 weeks)
 - Linear Regression and Optimization
 - Please review linear algebra, probability, optimization in the Tutorial Note.

- **Part 2: Classification** (5 weeks)
 - Methods to train linear classifiers
 - Feature analysis, Geometry, Bayesian decision rule, logistic regression, perceptron algorithm, support vector machine

- **Part 3: Handling Uncertainty** (3 weeks)
 - Imperfect data: noisy label, unbalanced data, missing data, knowledge transfer
 - Robustness study: adversarial attack and defense

- **Part 4: Learning Theory** (5 weeks)
 - Evaluation of a classifier.
 - Feasibility of learning, VC dimension, bias-variance, validation
Teaching Staff

Instructor: Prof. Stanley Chan
MSEE 338
By email appointment.

Teaching Assistants:
Guanzhe Hong, Tue 9-11am, EE 208/209
Tolunay Sefi, Thu 2-4pm, EE 208/209

Admin Assistants:
Camille Hamelman, MSEE 330
Cheryl Leucks, MSEE 330

Email: ece595chan@gmail.com
Please do not email our personal account.
You can specify whom you want to write to.

Piazza: https://piazza.com/class/k55p17bbatn2e0
Teaching Staff

- Instructor: Prof. Stanley Chan
 - MSEE 338.
 - By email appointment.
Teaching Staff

- **Instructor:** Prof. Stanley Chan
 - MSEE 338.
 - By email appointment.

- **Teaching Assistants:**
 - Guanzhe Hong, Tue 9-11am, EE 208/209
 - Tolunay Sefi, Thu 2-4pm, EE 208/209
Teaching Staff

- Instructor: Prof. Stanley Chan
 - MSEE 338.
 - By email appointment.

- Teaching Assistants:
 - Guanzhe Hong, Tue 9-11am, EE 208/209
 - Tolunay Sefi, Thu 2-4pm, EE 208/209

- Admin Assistants:
 - Camille Hamelman, MSEE 330
 - Cheryl Leucks, MSEE 330
Teaching Staff

- **Instructor:** Prof. Stanley Chan
 - MSEE 338.
 - By email appointment.

- **Teaching Assistants:**
 - Guanzhe Hong, Tue 9-11am, EE 208/209
 - Tolunay Sefi, Thu 2-4pm, EE 208/209

- **Admin Assistants:**
 - Camille Hamelman, MSEE 330
 - Cheryl Leucks, MSEE 330

- **Email:**
 - ece595chan@gmail.com

 - Please do not email our personal account.
 - You can specify whom you want to write to.
Teaching Staff

- Instructor: Prof. Stanley Chan
 - MSEE 338.
 - By email appointment.

- Teaching Assistants:
 - Guanzhe Hong, Tue 9-11am, EE 208/209
 - Tolunay Sefi, Thu 2-4pm, EE 208/209

- Admin Assistants:
 - Camille Hamelman, MSEE 330
 - Cheryl Leucks, MSEE 330

- Email:
 - ece595chan@gmail.com
 - Please do not email our personal account.
 - You can specify whom you want to write to.

- Piazza: https://piazza.com/class/k55p17bbatn2e0
Textbook and References

- **Elements of Statistical Learning**, by Hastie, Tibshirani and Friedman, 2009.
Grades

- Homework Assignments (30%)

Late Homework:
- 20% off by 5pm. This includes printer failure, etc.
- 40% off by next business day 5pm.
- 100% off afterwards.

Acknowledge your friends. Write your own solution.

Coarse grading:
- 5 points. All correct / small typos.
- 4 points. Minor mistakes.
- 3 points. Some mistakes.
- 2 points. Major mistakes.
- 1 point. You hand in, but none of them is correct.
- 0 points. You do not hand in homework.

Put your class ID.

Homework pick up: Fill up the survey at https://engineering.purdue.edu/ChanGroup/ECE595/homework.html
Homework Assignments (30%)

- 6 homework. Due Fridays 11:59am.
Grades

- **Homework Assignments (30%)**
 - 6 homework. Due Fridays 11:59am.
 - Late Homework:
 - 20% off by 5pm. This includes printer failure, etc.
 - 40% off by next business day 5pm.
 - 100% off afterwards.
 - Acknowledge your friends. Write your own solution.
 - Coarse grading.
 - 5 points. All correct / small typos.
 - 4 points. Minor mistakes.
 - 3 points. Some mistakes.
 - 2 points. Major mistakes.
 - 1 point. You hand in, but none of them is correct.
 - 0 points. You do not hand in homework.
 - Put your class ID.
 - Homework pick up: Fill up the survey at https://engineering.purdue.edu/ChanGroup/ECE595/homework.html
Grades

- **Homework Assignments (30%)**
 - 6 homework. Due Fridays 11:59am.
 - Late Homework:
 - 20% off by 5pm. This includes printer failure, etc.
 - 40% off by next business day 5pm.
 - 100% off afterwards.

- Acknowledge your friends. Write your own solution.
- Coarse grading.
 - 5 points. All correct / small typos.
 - 4 points. Minor mistakes.
 - 3 points. Some mistakes.
 - 2 points. Major mistakes.
 - 1 points. You hand in, but none of them is correct.
 - 0 points. You do not hand in homework.

- Put your class ID.
- Homework pick up: Fill up the survey at https://engineering.purdue.edu/ChanGroup/ECE595/homework.html
Grades

Homework Assignments (30%)

- 6 homework. Due Fridays 11:59am.
- Late Homework:
 - 20% off by 5pm. This includes printer failure, etc.
 - 40% off by next business day 5pm.
 - 100% off afterwards.
- Acknowledge your friends. Write your own solution.
Grades

- **Homework Assignments (30%)**
 - 6 homework. Due Fridays 11:59am.
 - Late Homework:
 - 20% off by 5pm. This includes printer failure, etc.
 - 40% off by next business day 5pm.
 - 100% off afterwards.
 - Acknowledge your friends. Write your own solution.
 - Coarse grading:
 - 5 points. All correct / small typos.
 - 4 points. Minor mistakes.
 - 3 points. Some mistakes.
 - 2 points. Major mistakes.
 - 1 points. You hand in, but none of them is correct.
 - 0 points. You do not hand in homework

Homework pick up: Fill up the survey at https://engineering.purdue.edu/ChanGroup/ECE595/homework.html
Grades

- **Homework Assignments (30%)**
 - 6 homework. Due Fridays 11:59am.
 - Late Homework:
 - 20% off by 5pm. This includes printer failure, etc.
 - 40% off by next business day 5pm.
 - 100% off afterwards.
 - Acknowledge your friends. Write your own solution.
 - Coarse grading.
 - 5 points. All correct / small typos.
 - 4 points. Minor mistakes.
 - 3 points. Some mistakes.
 - 2 points. Major mistakes.
 - 1 points. You hand in, but none of them is correct.
 - 0 points. You do not hand in homework
 - Put your class ID.
Grades

- **Homework Assignments** (30%)
 - 6 homework. Due Fridays 11:59am.
 - Late Homework:
 - 20% off by 5pm. This includes printer failure, etc.
 - 40% off by next business day 5pm.
 - 100% off afterwards.
 - Acknowledge your friends. Write your own solution.
 - Coarse grading:
 - 5 points. All correct / small typos.
 - 4 points. Minor mistakes.
 - 3 points. Some mistakes.
 - 2 points. Major mistakes.
 - 1 points. You hand in, but none of them is correct.
 - 0 points. You do not hand in homework
 - Put your class ID.
 - Homework pick up: Fill up the survey at
 https://engineering.purdue.edu/ChanGroup/ECE595/homework.html
Grades

Midterm (30%)

Probably before the Spring break. The exact date will be announced later.

Final (40%)

TBD

Letter Grade Option

Exact grade will be subject to class performance.

Pass / No Pass Option

Do everything. Pass if the overall score is above 50.

Audit

Welcome. Give me the audit form.
Grades

- **Midterm** (30%)
 - Probably before the Spring break.
 - The exact date will be announced later.
Grades

- **Midterm** (30%)
 - Probably before the Spring break.
 - The exact date will be announced later.

- **Final** (40%)
 - TBD
Grades

- **Midterm (30%)**
 - Probably before the Spring break.
 - The exact date will be announced later.

- **Final (40%)**
 - TBD

- **Letter Grade Option**
 - Exact grade will be subject to class performance.
Grades

- **Midterm** (30%)
 - Probably before the Spring break.
 - The exact date will be announced later.

- **Final** (40%)
 - TBD

- **Letter Grade Option**
 - Exact grade will be subject to class performance.

- **Pass / No Pass Option**
 - Do everything.
 - Pass if the overall score is above 50.
Grades

- **Midterm** (30%)
 - Probably before the Spring break.
 - The exact date will be announced later.

- **Final** (40%)
 - TBD

- **Letter Grade Option**
 - Exact grade will be subject to class performance.

- **Pass / No Pass Option**
 - Do everything.
 - Pass if the overall score is above 50.

- **Audit**
 - Welcome. Give me the audit form.
Pre-Requisites

Linear Algebra:
- Matrix-vector multiplication Ax
- Transpose A^T
- Symmetric matrices $A = A^T$
- Norm $\|x\|$
- Trace $\text{Tr}(A)$
- Inverse A^{-1}
- Determinant $|A|$
- Eigenvalue and eigenvector $A = U\Lambda U^T$.

Probability:
- Random variable X
- Probability density function $p(x)$
- Cumulative distribution function $F(x)$
- Expectation $E[X]$
- Variance $\text{Var}[X]$
- Function of random variable $E[g(X)]$
- Joint Gaussian, Law of Large Number, Central Limit Theorem.

Optimization:
- Convex function, convex set, operations which preserve convexity
- Lagrange multiplier
- KKT conditions
- Primal optimal, dual optimal
- Complementary slackness
- Constrained optimization, duality theorem.

Pre-Requisites

- **Linear Algebra:**
 - Matrix-vector multiplication Ax, transpose A^T, symmetric matrices $A = A^T$, norm $\|x\|$, trace $\text{Tr}(A)$, inverse A^{-1}, determinant $|A|$, eigenvalue and eigenvector $A = U\Lambda U^T$.
 - Gilbert Strang, Linear Algebra and Its Applications, 5th Edition
Pre-Requisites

- **Linear Algebra:**
 - Matrix-vector multiplication Ax, transpose A^T, symmetric matrices $A = A^T$, norm $||x||$, trace $\text{Tr}(A)$, inverse A^{-1}, determinant $|A|$, eigenvalue and eigenvector $A = U \Lambda U^T$.
 - Gilbert Strang, Linear Algebra and Its Applications, 5th Edition

- **Probability:**
 - Random variable X, probability density function $p(x)$, cumulative distribution function $F(x)$, expectation $\mathbb{E}[X]$, variance $\text{Var}[X]$, function of random variable $\mathbb{E}[g(X)]$, joint Gaussian, Law of Large Number, Central Limit Theorem.
Pre-Requisites

- **Linear Algebra:**
 - Matrix-vector multiplication Ax, transpose A^T, symmetric matrices $A = A^T$, norm $\|x\|$, trace $\text{Tr}(A)$, inverse A^{-1}, determinant $|A|$, eigenvalue and eigenvector $A = U\Lambda U^T$.
 - Gilbert Strang, Linear Algebra and Its Applications, 5th Edition

- **Probability:**
 - Random variable X, probability density function $p(x)$, cumulative distribution function $F(x)$, expectation $\mathbb{E}[X]$, variance $\text{Var}[X]$, function of random variable $\mathbb{E}[g(X)]$, joint Gaussian, Law of Large Number, Central Limit Theorem.

- **Optimization:**
 - Convex function, convex set, operations which preserve convexity, Lagrange multiplier, KKT conditions, primal optimal, dual optimal, complementary slackness, constrained optimization, duality theorem.
Pre-Requisites

Please do homework 0 at

https://engineering.purdue.edu/ChanGroup/ECE595/homework.html

If you can comfortably do:

- 3-4 problems: You are ready for the course.
- 2 problems: You need to put extra effort if you take the course.
- 0-1 problem: Consider taking the course later.

“Comfortable” means

- You know the mainstream approach.
- No hacking.
Programming

- **Python**
 - Our primary programming language.
 - Convert your MATLAB code to Python.
 - https://engineering.purdue.edu/ChanGroup/ECE595/python.html

- **CVX**
 - Optimization toolbox.
 - No need to write your own optimization.
 - https://engineering.purdue.edu/ChanGroup/ECE595/cvx.html

- **LaTeX**
 - Typesetting your homework.
 - Recommended. Not required.
 - Template available
 - https://engineering.purdue.edu/ChanGroup/ECE595/latex.html
Quick Comparison

- Difference between ECE 595 and CS 578 Statistical ML:
 - Different offering units.
 - Different perspectives.

- Difference between ECE 595 and ECE 662 Pattern Recognition:
 - Part 2 of ECE 595 has some overlap with ECE 662.
 - Part 1, 3, 4 are different.

- Difference between ECE 595 and BME 595 Deep learning:
 - ECE 595 only touches briefly on deep learning.

- Difference between ECE 595 and ECE 570 Artificial Intelligence:
 - ECE 595 focuses on supervised learning.
 - ECE 570 has some coverage on unsupervised learning.

- Difference between ECE 595 and ECE 629 Neural Network:
 - We have some, but not a lot on neural networks.

- Difference between ML1 and ML2?
 - ECE 595 (ML1) focuses on foundation.
 - ECE 595 (ML2) focuses on deep learning.
Quick Comparison

- Difference between ECE 595 and CS 578 Statistical ML:
 - Different offering units.
 - Different perspectives.

- Difference between ECE 595 and ECE 662 Pattern Recognition:
 - Part 2 of ECE 595 has some overlap ECE 662.
 - Part 1, 3, 4 are different.
Quick Comparison

- Difference between ECE 595 and CS 578 Statistical ML:
 - Different offering units.
 - Different perspectives.

- Difference between ECE 595 and ECE 662 Pattern Recognition:
 - Part 2 of ECE 595 has some overlap ECE 662.
 - Part 1, 3, 4 are different.

- Difference between ECE 595 and BME 595 Deep learning:
 - ECE 595 only touches briefly on deep learning.
Quick Comparison

- Difference between ECE 595 and CS 578 Statistical ML:
 - Different offering units.
 - Different perspectives.
- Difference between ECE 595 and ECE 662 Pattern Recognition:
 - Part 2 of ECE 595 has some overlap ECE 662.
 - Part 1, 3, 4 are different.
- Difference between ECE 595 and BME 595 Deep learning:
 - ECE 595 only touches briefly on deep learning.
- Difference between ECE 595 and ECE 570 Artificial Intelligence:
 - ECE 595 focuses on supervised learning.
 - ECE 570 has some coverage on unsupervised learning.
Quick Comparison

- Difference between ECE 595 and CS 578 Statistical ML:
 - Different offering units.
 - Different perspectives.

- Difference between ECE 595 and ECE 662 Pattern Recognition:
 - Part 2 of ECE 595 has some overlap ECE 662.
 - Part 1, 3, 4 are different.

- Difference between ECE 595 and BME 595 Deep learning:
 - ECE 595 only touches briefly on deep learning.

- Difference between ECE 595 and ECE 570 Artificial Intelligence:
 - ECE 595 focuses on supervised learning.
 - ECE 570 has some coverage on unsupervised learning.

- Difference between ECE 595 and ECE 629 Neural Network:
 - We have some, but not a lot on neural networks.
Quick Comparison

- Difference between ECE 595 and CS 578 Statistical ML:
 - Different offering units.
 - Different perspectives.

- Difference between ECE 595 and ECE 662 Pattern Recognition:
 - Part 2 of ECE 595 has some overlap ECE 662.
 - Part 1, 3, 4 are different.

- Difference between ECE 595 and BME 595 Deep learning:
 - ECE 595 only touches briefly on deep learning.

- Difference between ECE 595 and ECE 570 Artificial Intelligence:
 - ECE 595 focuses on supervised learning.
 - ECE 570 has some coverage on unsupervised learning.

- Difference between ECE 595 and ECE 629 Neural Network:
 - We have some, but not a lot on neural networks.

- Difference between ML1 and ML2?
 - ECE 595 (ML1) focuses on foundation
 - ECE 595 (ML2) focuses on deep learning
Tutorials

- Tutorial on Linear Algebra

- Tutorial on Probability
 https://engineering.purdue.edu/ChanGroup/ECE595/files/Tutorial02_handout.pdf