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N
Outline

Outline
e Equality Constrained Optimization (Same as Lecture 4)

@ Inequality Constrained Optimization

Reference
o Nocedal-Wright, Numerical Optimization. (Chapter 12.3, 12.4, 12.5)
e Boyd-Vandenberghe, Convex Optimization. (Chapter 9.1, 10.1, 11.1)
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Constrained Optimization
Equality Constrained Optimization:
e f
mlpelrﬂgjze (x)

subject to hj(x) =0, j=1,... k.

Requires a function: Lagrangian function
k
L0x,v) E f(x) = vihy(x).
j=1

v = [u1,...,vx]: Lagrange multipliers or the dual variables.
Solution (x*,v*) satisfies

VxL(x*,v")
Vo L(x*,v")

0,
0
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Example

@ Consider the problem
minixmize X1 + Xo
subject to x? + x5 = 2.
e Minimizer is x = (—1, —1).

T2
4

v [

\ @ Objective gradient
o |1
j o @ Constraint gradient
W |2x7 2
¢ v =[] - [0
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First Order Optimality

v T
W
AV

v = o] e nee = 78] 5

2x;
@ Lagrangian condition holds: Put v* = —1. Then,
Vi L(x*, v* ZV Vh(
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Second Order Optimality

adh

@ First Order Condition: Find stationary point'
Vi L(x*, v ZV Vhj(x

@ Second Order Condition: Determine maxima / minima:
Vex L(x*,v*) >0
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Example: £>-minimization with constraint

o1 2 .
minimize §||x — xol|%, subject to Ax =y.
The Lagrangian function of the problem is
1
£(x,v) = ollx — %ol — T (Ax — y).

The first order optimality condition requires

VxL(x,v) = (x —x0) —ATv =0

VoL(x,v)=Ax —y =0.
Multiply the first equation by A on both sides:

A(x —xo) — AATL =

= Ax —Axg =AAv
—~~
=y
= y—Axy = AATv
= (AAT) "1 (y — Axg) =v
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Example: £>-minimization with constraint

. 1 .
minimize =[x — xo?, subject to Ax =y.
xeR" 2
The first order optimality condition requires

ViL(x, ) =(x—x0)—ATvr =0
VoL(x,v)=Ax —y =0.

We just showed: v = (AAT)~1 (y — Axg). Substituting this result into
the first order optimality yields

X =xg+ ATy
=x0+AT(AAT) 1 (y — Axo)

Therefore, the solution is x = xo + AT (AAT)~1(y — Axo).
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Special Case

1
minimize = |x — xol|?, subject to Ax =y.
x€R" 2
Special case: When Ax =y is simplified to w ' x = 0.

e wix=0is a line.

@ Find a point x on the line that is closest to xg.

@ Solution is

x=xo+w(w w) 10— w'xq)

x (WT“)TW
= X0 — _
lw?

@ o
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In practice ...

@ Use CVX to solve problem
@ Here is a MATLAB code

o Exercise: Turn it into Python.

% MATLAB code: Use CVX to solve min ||x - x0l|, s.t. Ax =y
m = 3; n = 2%m;

A = randn(m,n); xstar = randn(n,1);
y = Axxstar;

x0 = randn(n,1);

cvx_begin

variable x(n)
minimize ( norm(x-x0) )
subject to
Axx == y;
cvx_end
% you may compare with the solution x0 + A’*inv(A*A’)*(y-A*x0).
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/1-minimization with constraint
Solve the ¢; problem:
minimize ||x||1,
xeRn

subject to Ax =y.

% MATLAB code: Use CVX to solve min |[x||_1, s.t. Ax <=y
m = 100; n = 50;
A randn(m,n) ;
x0 = randn(n,1);
y = A*x0 + rand(m,1);
cvx_begin
variable x_11(n)
minimize( norm( x_11, 1 ) )
subject to
Axx_11 == y;
cvx_end
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N
Outline

Outline
e Equality Constrained Optimization (Same as Lecture 4)

@ Inequality Constrained Optimization

Reference
o Nocedal-Wright, Numerical Optimization. (Chapter 12.3, 12.4, 12.5)
e Boyd-Vandenberghe, Convex Optimization. (Chapter 9.1, 10.1, 11.1)

12/19



Inequality Constrained Optimization

Inequality constrained optimization:

f'
ml)r(1€|5r£"|ze (x)

subject to gj(x) >

Requires a function: Lagrangian function

k
L(x,p,v Zu,g, = > _vihi(x)
=1

1 € R™ and v € R¥ are called the Lagrange multipliers or the dual
variables.
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N
Karush-Kahn-Tucker Conditions

If (x*, u*,v*) is the solution to the constrained optimization, then all the
following conditions should hold:
(i) VeL(x*, pu*,v*)=0.
o Stationarity.
o The primal variables should be stationary.
(ii) gi(x*) > 0 and hj(x*) =0 for all i and j.
o Primal Feasibility.
o Ensures that constraints are satisfied.
(iii) pr >0 for all i and j.
o Dual Feasibility.
e Require pf > 0; but no constraint on v}.
(iv) pigi(x*) =0 forall i and j.
o Complementary Slackness
o Either uf =0 or gi(x*) = 0 (or both).
KKT Condition is a first order necessary condition.
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Example: />-minimization with two constraints

Solve the following least squares over positive quadrant problem.
o1 >
minimize —|x — b
nimize > x — |,

subject to x’1=1, and x>0.

%MATLAB code: Use CVX to solve min ||x-b|| s.t. sum(x) = 1, x >= 0.
cvx_begin
variable x(n)
minimize( norm(x-b, 2) )
subject to
sum(x) == 1;
X >= 0;

cvx_end
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-
Analytic Solution

1
L6 A7) = 5lx = yl* = ATx =51 =xT1).
Stationarity suggests that:
VxL(X,A,7)=x—b—-A+~71=0

This means
X:b+)\*’yl or X,':b,'+)\,'*’y.

The complementary slackness implies \jx; = 0.
@ Case 1: If \; =0, then

0
° X,':b;+){7’}/:b,'7"y.
e Since constraint requires x; > 0, this means b; > ~.
o Case 2: If A\; > 0, then x; = 0.
o = b+ A — 7.
o This implies b; + A\;j = 7.
e Since \; > 0, this implies b; < ~.
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These three cases can be re-written as:
o If by > ~, then x; = b — v
o If bj =, then x; = 0;
o If b <, then x; = 0.

Compactly written as

x = max(b —~1,0).
Primal feasibility implies that
x"1=1, o ix,- =1
Therefore, v needs to satisfy the equation

Zmax ,0)=1,

which can be found by domg a root-finding of

Zmax ,0) — 1.
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Non-CVX Implementation

%MATLAB code: solve min ||x-bl| s.t. sum(x) = 1, x >= 0.
n = 10;

b = randn(n,1);

fun = @(gamma) myfun(gamma,b);

gamma = fzero(fun,0);

x = max(b-gamma,0) ;

where the function myfun is defined as

function y = myfun(gamma,b)
y = sum(max(b-gamma,0))-1;
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Equivalence between Problems

Consider three optimization problems

x§ = argmin [|Ax — y||* + Al|x|?
X

x* =argmin ||Ax — y|? subject to ||x[|? < «
X

x* = argmin |x|? subject to ||Ax —y||? <e.
X

They are equivalent when a = ||x}||?, € = ||Ax} — y|2.

Az — y]|?

a [l
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