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Outline

Outline

Equality Constrained Optimization (Same as Lecture 4)

Inequality Constrained Optimization

Reference

Nocedal-Wright, Numerical Optimization. (Chapter 12.3, 12.4, 12.5)

Boyd-Vandenberghe, Convex Optimization. (Chapter 9.1, 10.1, 11.1)
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Constrained Optimization

Equality Constrained Optimization:

minimize
x∈Rn

f (x)

subject to hj(x) = 0, j = 1, . . . , k.

Requires a function: Lagrangian function

L(x ,ν)
def
= f (x)−

k∑
j=1

νjhj(x).

ν = [ν1, . . . , νk ]: Lagrange multipliers or the dual variables.

Solution (x∗,ν∗) satisfies

∇xL(x∗,ν∗) = 0,

∇νL(x∗,ν∗) = 0.
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Example

Consider the problem

minimize
x

x1 + x2

subject to x21 + x22 = 2.

Minimizer is x = (−1,−1).

Objective gradient

∇f (x∗) =

[
1
1

]
Constraint gradient

∇h(x∗) =

[
2x∗1
2x∗2

]
=

[
−2
−2

]
4 / 19



c©Stanley Chan 2020. All Rights Reserved.

First Order Optimality

∇f (x∗) =

[
1
1

]
and ∇h(x∗) =

[
2x∗1
2x∗2

]
=

[
−2
−2

]
Lagrangian condition holds: Put ν∗ = −1

2 . Then,

∇xL(x∗,ν∗) = ∇f (x∗)−
k∑

j=1

ν∗j ∇hj(x∗) = 0.
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Second Order Optimality

First Order Condition: Find stationary point:

∇xL(x∗,ν∗) = ∇f (x∗)−
k∑

j=1

ν∗j ∇hj(x∗) = 0.

Second Order Condition: Determine maxima / minima:

∇xxL(x∗,ν∗) ≥ 0
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Example: `2-minimization with constraint

minimize
x∈Rn

1

2
‖x − x0‖2, subject to Ax = y .

The Lagrangian function of the problem is

L(x ,ν) =
1

2
‖x − x0‖2 − νT (Ax − y).

The first order optimality condition requires

∇xL(x ,ν) = (x − x0)− ATν = 0

∇νL(x ,ν) = Ax − y = 0.

Multiply the first equation by A on both sides:

A(x − x0)− AATν = 0
⇒ Ax︸︷︷︸

=y

− Ax0 = AATν

⇒ y − Ax0 = AATν

⇒ (AAT )−1 (y − Ax0) = ν
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Example: `2-minimization with constraint

minimize
x∈Rn

1

2
‖x − x0‖2, subject to Ax = y .

The first order optimality condition requires

∇xL(x ,ν) = (x − x0)− ATν = 0

∇νL(x ,ν) = Ax − y = 0.

We just showed: ν = (AAT )−1 (y − Ax0). Substituting this result into
the first order optimality yields

x = x0 + ATν

= x0 + AT (AAT )−1 (y − Ax0)

Therefore, the solution is x = x0 + AT (AAT )−1(y − Ax0).
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Special Case

minimize
x∈Rn

1

2
‖x − x0‖2, subject to Ax = y .

Special case: When Ax = y is simplified to wTx = 0.

wTx = 0 is a line.
Find a point x on the line that is closest to x0.
Solution is

x = x0 + w(wTw)−1(0−wTx0)

= x0 −
(
wTx0

‖w‖2

)T

w .
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In practice ...

Use CVX to solve problem

Here is a MATLAB code

Exercise: Turn it into Python.

% MATLAB code: Use CVX to solve min ||x - x0||, s.t. Ax = y

m = 3; n = 2*m;

A = randn(m,n); xstar = randn(n,1);

y = A*xstar;

x0 = randn(n,1);

cvx_begin

variable x(n)

minimize( norm(x-x0) )

subject to

A*x == y;

cvx_end

% you may compare with the solution x0 + A’*inv(A*A’)*(y-A*x0).
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`1-minimization with constraint

Solve the `1 problem:

minimize
x∈Rn

‖x‖1,

subject to Ax = y .

% MATLAB code: Use CVX to solve min ||x||_1, s.t. Ax <= y

m = 100; n = 50;

A = randn(m,n);

x0 = randn(n,1);

y = A*x0 + rand(m,1);

cvx_begin

variable x_l1(n)

minimize( norm( x_l1, 1 ) )

subject to

A*x_l1 == y;

cvx_end
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Outline

Outline

Equality Constrained Optimization (Same as Lecture 4)

Inequality Constrained Optimization

Reference

Nocedal-Wright, Numerical Optimization. (Chapter 12.3, 12.4, 12.5)

Boyd-Vandenberghe, Convex Optimization. (Chapter 9.1, 10.1, 11.1)
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Inequality Constrained Optimization

Inequality constrained optimization:

minimize
x∈Rn

f (x)

subject to gi (x) ≥ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , k.

Requires a function: Lagrangian function

L(x ,µ,ν)
def
= f (x)−

m∑
i=1

µigi (x)−
k∑

j=1

νjhj(x).

µ ∈ Rm and ν ∈ Rk are called the Lagrange multipliers or the dual
variables.
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Karush-Kahn-Tucker Conditions

If (x∗,µ∗,ν∗) is the solution to the constrained optimization, then all the
following conditions should hold:

(i) ∇xL(x∗,µ∗,ν∗) = 0.

Stationarity.
The primal variables should be stationary.

(ii) gi (x
∗) ≥ 0 and hj(x

∗) = 0 for all i and j .

Primal Feasibility.
Ensures that constraints are satisfied.

(iii) µ∗i ≥ 0 for all i and j .

Dual Feasibility.
Require µ∗

i ≥ 0; but no constraint on ν∗i .

(iv) µ∗i gi (x
∗) = 0 for all i and j .

Complementary Slackness
Either µ∗

i = 0 or gi (x
∗) = 0 (or both).

KKT Condition is a first order necessary condition.
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Example: `2-minimization with two constraints

Solve the following least squares over positive quadrant problem.

minimize
x∈Rn

1

2
‖x − b‖2,

subject to xT1 = 1, and x ≥ 0.
(1)

%MATLAB code: Use CVX to solve min ||x-b|| s.t. sum(x) = 1, x >= 0.

cvx_begin

variable x(n)

minimize( norm(x-b, 2) )

subject to

sum(x) == 1;

x >= 0;

cvx_end

15 / 19



c©Stanley Chan 2020. All Rights Reserved.

Analytic Solution

L(x ,λ, γ) =
1

2
‖x − y‖2 − λTx − γ(1− xT1).

Stationarity suggests that:

∇xL(x ,λ, γ) = x − b − λ + γ1 = 0

This means
x = b + λ− γ1 or xi = bi + λi − γ.

The complementary slackness implies λixi = 0.
Case 1: If λi = 0, then

xi = bi +���
0

λi − γ = bi − γ.
Since constraint requires xi ≥ 0, this means bi ≥ γ.

Case 2: If λi > 0, then xi = 0.

��>
0

xi = bi + λi − γ.
This implies bi + λi = γ.
Since λi > 0, this implies bi < γ.
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These three cases can be re-written as:

If bi > γ, then xi = bi − γ;
If bi = γ, then xi = 0;
If bi < γ, then xi = 0.

Compactly written as
x = max(b − γ1, 0).

Primal feasibility implies that

xT1 = 1, ⇔
n∑

i=1

xi = 1.

Therefore, γ needs to satisfy the equation
n∑

i=1

max(bi − γ, 0) = 1,

which can be found by doing a root-finding of

g(γ) =
n∑

i=1

max(bi − γ, 0)− 1.
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Non-CVX Implementation

%MATLAB code: solve min ||x-b|| s.t. sum(x) = 1, x >= 0.

n = 10;

b = randn(n,1);

fun = @(gamma) myfun(gamma,b);

gamma = fzero(fun,0);

x = max(b-gamma,0);

where the function myfun is defined as

function y = myfun(gamma,b)

y = sum(max(b-gamma,0))-1;
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Equivalence between Problems

Consider three optimization problems

x∗λ = argmin
x

‖Ax − y‖2 + λ‖x‖2

x∗α = argmin
x

‖Ax − y‖2 subject to ‖x‖2 ≤ α

x∗ε = argmin
x

‖x‖2 subject to ‖Ax − y‖2 ≤ ε.

They are equivalent when α = ‖x∗λ‖2, ε = ‖Ax∗λ − y‖2.
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