ECE 595: Machine Learning I Tutorial 04: Constrained Optimization

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Outline

Outline

- Equality Constrained Optimization (Same as Lecture 4)
- Inequality Constrained Optimization

Reference

- Nocedal-Wright, Numerical Optimization. (Chapter 12.3, 12.4, 12.5)
- Boyd-Vandenberghe, Convex Optimization. (Chapter 9.1, 10.1, 11.1)

Constrained Optimization

Equality Constrained Optimization:

Requires a function: Lagrangian function

$$\mathcal{L}(\mathbf{x}, \mathbf{\nu}) \stackrel{\mathsf{def}}{=} f(\mathbf{x}) - \sum_{j=1}^k \nu_j h_j(\mathbf{x}).$$

 $\nu = [\nu_1, \dots, \nu_k]$: Lagrange multipliers or the dual variables.

Solution $(\mathbf{x}^*, \mathbf{\nu}^*)$ satisfies

$$abla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^*, \mathbf{
u}^*) = \mathbf{0}, \\
abla_{\mathbf{
u}}\mathcal{L}(\mathbf{x}^*, \mathbf{
u}^*) = \mathbf{0}.
abla$$

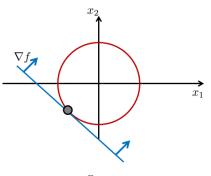
Example

Consider the problem

minimize
$$x_1 + x_2$$

subject to $x_1^2 + x_2^2 = 2$.

• Minimizer is x = (-1, -1).



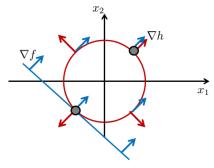
Objective gradient

$$\nabla f(\mathbf{x}^*) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Constraint gradient

$$\nabla h(\mathbf{x}^*) = \begin{bmatrix} 2x_1^* \\ 2x_2^* \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

First Order Optimality

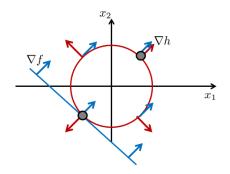


$$abla f(\mathbf{x}^*) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad
abla h(\mathbf{x}^*) = \begin{bmatrix} 2x_1^* \\ 2x_2^* \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

• Lagrangian condition holds: Put $\nu^* = -\frac{1}{2}$. Then,

$$\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^*, \mathbf{\nu}^*) = \nabla f(\mathbf{x}^*) - \sum_{j=1}^k \nu_j^* \nabla h_j(\mathbf{x}^*) = \mathbf{0}.$$

Second Order Optimality



• First Order Condition: Find stationary point:

$$\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^*, \boldsymbol{\nu}^*) = \nabla f(\mathbf{x}^*) - \sum_{j=1}^k \nu_j^* \nabla h_j(\mathbf{x}^*) = \mathbf{0}.$$

• Second Order Condition: Determine maxima / minima:

$$\nabla_{\mathbf{x}\mathbf{x}}\mathcal{L}(\mathbf{x}^*, \boldsymbol{\nu}^*) \geq 0$$

Example: ℓ_2 -minimization with constraint

minimize
$$\frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2$$
, subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$.

The Lagrangian function of the problem is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\nu}) = \frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 - \boldsymbol{\nu}^T (\mathbf{A}\mathbf{x} - \mathbf{y}).$$

The first order optimality condition requires

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \mathbf{\nu}) = (\mathbf{x} - \mathbf{x}_0) - \mathbf{A}^T \mathbf{\nu} = \mathbf{0}$$

$$\nabla_{\mathbf{\nu}} \mathcal{L}(\mathbf{x}, \mathbf{\nu}) = \mathbf{A}\mathbf{x} - \mathbf{y} = \mathbf{0}.$$

Multiply the first equation by **A** on both sides:

$$\begin{array}{ccc}
A(x - x_0) - AA^T \nu &= 0 \\
\Rightarrow & \underbrace{Ax} - Ax_0 &= AA^T \nu \\
\Rightarrow & y - Ax_0 &= AA^T \nu \\
\Rightarrow & (AA^T)^{-1} (y - Ax_0) &= \nu
\end{array}$$

Example: ℓ_2 -minimization with constraint

minimize
$$\frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2$$
, subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$.

The first order optimality condition requires

$$abla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \mathbf{\nu}) = (\mathbf{x} - \mathbf{x}_0) - \mathbf{A}^T \mathbf{\nu} = \mathbf{0}$$

$$abla_{\mathbf{\nu}} \mathcal{L}(\mathbf{x}, \mathbf{\nu}) = \mathbf{A}\mathbf{x} - \mathbf{y} = \mathbf{0}.$$

We just showed: $\nu = (\mathbf{A}\mathbf{A}^T)^{-1}(\mathbf{y} - \mathbf{A}\mathbf{x}_0)$. Substituting this result into the first order optimality yields

$$x = x_0 + \mathbf{A}^T \nu$$

= $x_0 + \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} (\mathbf{y} - \mathbf{A} x_0)$

Therefore, the solution is $\mathbf{x} = \mathbf{x}_0 + \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} (\mathbf{y} - \mathbf{A} \mathbf{x}_0)$.

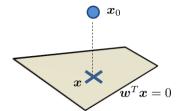
Special Case

minimize
$$\frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2$$
, subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$.

Special case: When $\mathbf{A}\mathbf{x} = \mathbf{y}$ is simplified to $\mathbf{w}^T \mathbf{x} = 0$.

- $\mathbf{w}^T \mathbf{x} = 0$ is a line.
- Find a point x on the line that is closest to x_0 .
- Solution is

$$x = x_0 + \mathbf{w}(\mathbf{w}^T \mathbf{w})^{-1}(0 - \mathbf{w}^T x_0)$$
$$= x_0 - \left(\frac{\mathbf{w}^T x_0}{\|\mathbf{w}\|^2}\right)^T \mathbf{w}.$$



In practice ...

- Use CVX to solve problem
- Here is a MATLAB code
- Exercise: Turn it into Python.

ℓ_1 -minimization with constraint

Solve the ℓ_1 problem:

```
\min_{oldsymbol{x} \in \mathbb{R}^n} \|oldsymbol{x}\|_1, subject to oldsymbol{A}oldsymbol{x} = oldsymbol{y}.
```

```
% MATLAB code: Use CVX to solve min ||x||_1, s.t. Ax <= y
m = 100; n = 50;
A = randn(m,n);
x0 = randn(n,1);
y = A*x0 + rand(m,1);
cvx_begin
  variable x_l1(n)
  minimize( norm( x_l1, 1 ) )
  subject to
    A*x_l1 == y;
cvx_end</pre>
```

Outline

Outline

- Equality Constrained Optimization (Same as Lecture 4)
- Inequality Constrained Optimization

Reference

- Nocedal-Wright, Numerical Optimization. (Chapter 12.3, 12.4, 12.5)
- Boyd-Vandenberghe, Convex Optimization. (Chapter 9.1, 10.1, 11.1)

Inequality Constrained Optimization

Inequality constrained optimization:

$$\begin{array}{ll} \underset{\boldsymbol{x} \in \mathbb{R}^n}{\text{minimize}} \ f(\boldsymbol{x}) \\ \text{subject to} \ g_i(\boldsymbol{x}) \geq 0, \qquad i = 1, \dots, m \\ h_j(\boldsymbol{x}) = 0, \qquad j = 1, \dots, k. \end{array}$$

Requires a function: Lagrangian function

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\nu}) \stackrel{\text{def}}{=} f(\mathbf{x}) - \sum_{i=1}^{m} \mu_i \mathbf{g}_i(\mathbf{x}) - \sum_{j=1}^{k} \nu_j h_j(\mathbf{x}).$$

 $\mu \in \mathbb{R}^m$ and $\nu \in \mathbb{R}^k$ are called the **Lagrange multipliers** or the **dual** variables.

Karush-Kahn-Tucker Conditions

If (x^*, μ^*, ν^*) is the solution to the constrained optimization, then all the following conditions should hold:

- (i) $\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\mu}^*, \boldsymbol{\nu}^*) = \mathbf{0}$.
 - Stationarity.
 - The primal variables should be stationary.
- (ii) $g_i(\mathbf{x}^*) \geq 0$ and $h_j(\mathbf{x}^*) = 0$ for all i and j.
 - Primal Feasibility.
 - Ensures that constraints are satisfied.
- (iii) $\mu_i^* \geq 0$ for all i and j.
 - Dual Feasibility.
 - Require $\mu_i^* \geq 0$; but no constraint on ν_i^* .
- (iv) $\mu_i^* g_i(\mathbf{x}^*) = 0$ for all i and j.
 - Complementary Slackness
 - Either $\mu_i^* = 0$ or $g_i(x^*) = 0$ (or both).

KKT Condition is a first order **necessary** condition.

Example: ℓ_2 -minimization with two constraints

Solve the following least squares over positive quadrant problem.

```
%MATLAB code: Use CVX to solve min ||x-b|| s.t. sum(x) = 1, x >= 0.
cvx_begin
  variable x(n)
  minimize( norm(x-b, 2) )
  subject to
      sum(x) == 1;
      x >= 0;
cvx_end
```

Analytic Solution

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \gamma) = \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 - \boldsymbol{\lambda}^T \mathbf{x} - \gamma (1 - \mathbf{x}^T \mathbf{1}).$$

Stationarity suggests that:

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \gamma) = \mathbf{x} - \mathbf{b} - \boldsymbol{\lambda} + \gamma \mathbf{1} = \mathbf{0}$$

This means

$$\mathbf{x} = \mathbf{b} + \lambda - \gamma \mathbf{1}$$
 or $x_i = b_i + \lambda_i - \gamma$.

The complementary slackness implies $\lambda_i x_i = 0$.

- Case 1: If $\lambda_i = 0$, then
 - $x_i = b_i + \chi_i^0 \gamma = b_i \gamma$.
 - Since constraint requires $x_i \ge 0$, this means $b_i \ge \gamma$.
 - Case 2: If $\lambda_i > 0$, then $x_i = 0$.
 - $\bullet \underset{i}{\not\sim} b_i + \lambda_i \gamma.$
 - This implies $b_i + \lambda_i = \gamma$.
 - Since $\lambda_i > 0$, this implies $b_i < \gamma$.

These three cases can be re-written as:

- If $b_i > \gamma$, then $x_i = b_i \gamma$;
- If $b_i = \gamma$, then $x_i = 0$;
- If $b_i < \gamma$, then $x_i = 0$.

Compactly written as

$$x = \max(b - \gamma 1, 0).$$

Primal feasibility implies that

$$\mathbf{x}^T \mathbf{1} = 1, \qquad \Leftrightarrow \qquad \sum_{i=1}^n x_i = 1.$$

Therefore, γ needs to satisfy the equation

$$\sum_{i=1}^n \max(b_i - \gamma, 0) = 1,$$

which can be found by doing a root-finding of

$$g(\gamma) = \sum_{i=1}^{n} \max(b_i - \gamma, 0) - 1.$$

Non-CVX Implementation

```
%MATLAB code: solve min ||x-b|| s.t. sum(x) = 1, x >= 0.
n = 10;
b = randn(n,1);
fun = @(gamma) myfun(gamma,b);
gamma = fzero(fun,0);
x = max(b-gamma,0);
```

where the function myfun is defined as

```
function y = myfun(gamma,b)
y = sum(max(b-gamma,0))-1;
```

Equivalence between Problems

Consider three optimization problems

$$\begin{array}{lll} \mathbf{x}_{\lambda}^{*} &= \underset{\mathbf{x}}{\operatorname{argmin}} & \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^{2} + \lambda \|\mathbf{x}\|^{2} \\ \mathbf{x}_{\alpha}^{*} &= \underset{\mathbf{x}}{\operatorname{argmin}} & \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^{2} & \text{subject to } \|\mathbf{x}\|^{2} \leq \alpha \\ \mathbf{x}_{\epsilon}^{*} &= \underset{\mathbf{x}}{\operatorname{argmin}} & \|\mathbf{x}\|^{2} & \text{subject to } \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^{2} \leq \epsilon. \end{array}$$

They are equivalent when $\alpha = \|\mathbf{x}_{\lambda}^*\|^2$, $\epsilon = \|\mathbf{A}\mathbf{x}_{\lambda}^* - \mathbf{y}\|^2$.

