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Outline

[llustration in 1D
Generalized linear regression

Interpreting regression coefficients

Representation via regression coefficients

Reference:
o Gilbert Strang, Linear Algebra and Its Applications, 5th Edition.
o Carl Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
@ http://cs229.stanford.edu/section/cs229-1inalg.pdf

@ https:
//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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-
Line Fitting
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[llustration in 1D

Consider fitting 1D data (x,y!),..., (x",yM)
The parameter is 6 = [y, 60] "

(]

The model is
gg(X) = 91X + 90.

@ This can be written as
yt xt 1
y2 5 X2 1 91
S A R A [
yN N o1y
N~ ——
y A

The problem now translates to solve for (61,6) from this system of
linear equations.
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[llustration in 1D

The loss function is
N
J() = (y" — (61x" + 60))°.
n=1

Taking derivatives on both sides with respect to #; and 6 yields
N N
J6_2 "y"— 0 "2 -9 "l =0
0 =2 (S0 3 -3 )
P N N
8—90J(0) =2 <Zy” — 01 Zx" - N90> =0

n=1 n=1

Rearranging the terms, this is equivalent to AT A0 = AT y:
N

N

>ox" N

n=1 = 5/14
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Generalized Linear Regression

o Eg 1: Fourier series

x{ sin(wotp)
. X3 sin(2woty)
X = = i
xj sin(Kwotp)

d
y'=0"x" = ZOk sin(kwotp)
k=1

@ Oy: k-th Fourier coefficient

@ sin(kwotp): k-th Fourier basis at
time t,
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Generalized Linear Regression

o Eg 2: Legendre Polynomial

15 08 06 04 02 0 o0z 04 06 08 1 o “Orthogonalized” ponnomials
1 T T T T T T T T T
or 4 Xf P]_(tn)
n
B : n X2 P2(t”)
4 08 -06 04 02 0 02 04 06 08 1 x' = . =
1 T .
0 X,’% PK(tn)

e e y =0Tx"=>"0Ps(tn)
k=1

b @ Ox: k-th polynomial coefficient
L @ Py(tn): k-th Legendre

204 . .
of o T2 o o ] polynomial at time t,

XX ><>Z§<X>< % %
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Interpreting Results

city | funding hs not-hs <college college4 <crime rate
1 40 74 11 31 20 478
2 32 72 11 43 18 494
3 57 70 18 16 16 643
4 31 71 11 25 19 341
5 67 72 9 29 24 773
50 66 67 26 18 16 940
https://web.stanford.edu/~hastie/StatLearnSparsity/data.html
. . [0 ]
crime rate! 1 funding® hs? college4? 90
crime rate? 1 funding® hs? college4? 91
% - . . 2
crime rate” 1 funding" hs" collegea™ 9:
L7d ]
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Bias
Let us look at the first column:
crime rate! 1 funding® hs' ... college4! ZO
crime rate? 1 fundingZ hs® ... college4? 91
~ |- ) 2
crime rate” 1 funding" hs" ... collegea” 0'
|7d |

@ In the above equation, we have an all-one vector and a parameter 6.

@ This column is called the bias term.

@ Think of an y-axis off-set which brings the line up and down, but not
the slope.

@ Without the bias term, you force the line to start from the origin

which is not always desirable.
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Feature Vector

Consider one of the columns in the system

crime rate! 1 funding! hs' ... college4? zo

crime rate? 1 funding® hs® ... college4? 91

~ | ) 2

crime rate” 1 funding” hs" ... college4V 0:
~" L d-

@ The column vector a; is called a feature. The corresponding
coefficient 6; indicates the contribution of a;.
@ You can view the above system as

d
y=> ba
j=0

which expresses the measured data y as a linear combination of the
feature vectors. 10/14



-
Interpreting Results

Run regression analysis.> Here is the result:
@ 03 =10.9934: police funding
@ 0> = 1.1451: high school
@ 03 =10.1812: no high school
@ 64 =2.7386: college
@ 05 = —0.7781: college at least 4 years
One possible way to interpret the results:

@ Apparently, what matters is the amount of police funding and the
number of residents without no high school.

@ But this is not justified, because the columns are not normalized.

e To quantitatively justify these claims, we need to run statistical
analysis, e.g., confidence intervals, hypothesis tests.

R For this dataset, we need to add a regularization term so that
0= (A"TA+\)"'ATy. Here we set A = 1000.
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Representation

@ Linear regression can be used to identify influential representations.

@ For example, given the features of faces, we can determine which
feature is more prominent for the query image.
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-
Orthogonal A

@ Linear regression requires us solving the system of linear equations:
6=(ATA) ATy

@ For representation problems, one can hand-craft the representation
matrix A.

o If A is orthogonal, i.e., AT A = I, then 0 is simplified to
6=(ATA ATy

Examples of orthogonal A:

o Fourier matrix

o Wavelet matrix

o Features extracted by Principal Component Analysis (PCA)

o Matrices with i.i.d. Gaussian entries. Then AT A = I with high
probability.
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-
Fitting and Representation

This tutorial illustrates two perspectives of linear regression:
o Fitting Data: (Data Science)
o Given measurements, find a line to fit the data.
A is the data matrix storing the features (or attributes).
y is the vector storing the responses.
Useful for predicting values and analyzing contributions.
E.g.: Medical data, census data, stock market, etc.

e Representation: (Signal Processing, Computer Vision)

Given pre-defined features, find a representation.

e A s a set of given features which can be trained or hand-crafted.

e y is the query data.

e Useful for dimension reduction. Decision making based on coefficients
instead of y.

E.g.: Image classification, signal processing, etc.
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