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Outline

Illustration in 1D

Generalized linear regression

Interpreting regression coefficients

Representation via regression coefficients

Reference:

Gilbert Strang, Linear Algebra and Its Applications, 5th Edition.

Carl Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.

http://cs229.stanford.edu/section/cs229-linalg.pdf

https:

//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Line Fitting
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Illustration in 1D

Consider fitting 1D data (x1, y1), . . . , (xN , yN)

The parameter is θ = [θ1, θ0]T

The model is
gθ(x) = θ1x + θ0.

This can be written as 
y1

y2

...
yN


︸ ︷︷ ︸

y

≈


x1 1
x2 1
...

...
xN 1


︸ ︷︷ ︸

A

[
θ1
θ0

]
︸︷︷︸

θ

The problem now translates to solve for (θ1, θ0) from this system of
linear equations.
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Illustration in 1D

The loss function is

J(θ) =
N∑

n=1

(yn − (θ1x
n + θ0))2.

Taking derivatives on both sides with respect to θ1 and θ0 yields

∂

∂θ1
J(θ) = 2

(
N∑

n=1

xnyn − θ1

N∑
n=1

(xn)2 − θ0

N∑
n=1

xn

)
= 0

∂

∂θ0
J(θ) = 2

(
N∑

n=1

yn − θ1

N∑
n=1

xn − Nθ0

)
= 0

Rearranging the terms, this is equivalent to ATAθ = ATy :
N∑

n=1
(xn)2

N∑
n=1

xn

N∑
n=1

xn N

[θ1θ0
]

=


N∑

n=1
xnyn

N∑
n=1

yn


5 / 14



c©Stanley Chan 2020. All Rights Reserved.

Generalized Linear Regression
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Eg 1: Fourier series

xn =


xn1
xn2
...
xnd

 =


sin(ω0tn)

sin(2ω0tn)
...

sin(Kω0tn)


yn = θTxn =

d∑
k=1

θk sin(kω0tn)

θk : k-th Fourier coefficient

sin(kω0tn): k-th Fourier basis at
time tn
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Generalized Linear Regression
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Eg 2: Legendre Polynomial

“Orthogonalized” polynomials

xn =


xn1
xn2
...
xnK

 =


P1(tn)
P2(tn)

...
PK (tn)


yn = θTxn =

d∑
k=1

θkPk(tn)

θk : k-th polynomial coefficient

Pk(tn): k-th Legendre
polynomial at time tn
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Interpreting Results

https://web.stanford.edu/~hastie/StatLearnSparsity/data.html
crime rate1

crime rate2

...

crime rateN


︸ ︷︷ ︸

y

≈


1 funding1 hs1 . . . college41

1 funding2 hs2 . . . college42

...
...

...
. . .

...

1 fundingN hsN . . . college4N


︸ ︷︷ ︸

A


θ0
θ1
θ2
...
θd


︸ ︷︷ ︸

θ 8 / 14
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Bias

Let us look at the first column:
crime rate1

crime rate2

...

crime rateN


︸ ︷︷ ︸

y

≈


1 funding1 hs1 . . . college41

1 funding2 hs2 . . . college42

...
...

...
. . .

...

1 fundingN hsN . . . college4N


︸ ︷︷ ︸

A


θ0
θ1
θ2
...
θd


︸ ︷︷ ︸

θ

In the above equation, we have an all-one vector and a parameter θ0.

This column is called the bias term.

Think of an y-axis off-set which brings the line up and down, but not
the slope.

Without the bias term, you force the line to start from the origin
which is not always desirable.
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Feature Vector

Consider one of the columns in the system
crime rate1

crime rate2

...

crime rateN


︸ ︷︷ ︸

y

≈


1 funding1 hs1 . . . college41

1 funding2 hs2 . . . college42

...
...

...
. . .

...

1 fundingN hsN . . . college4N


︸ ︷︷ ︸

A


θ0
θ1
θ2
...
θd


︸ ︷︷ ︸

θ

The column vector aj is called a feature. The corresponding
coefficient θj indicates the contribution of aj .
You can view the above system as

y =
d∑

j=0

θjaj

which expresses the measured data y as a linear combination of the
feature vectors. 10 / 14
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Interpreting Results

Run regression analysis.1 Here is the result:

θ1 = 10.9934: police funding

θ2 = 1.1451: high school

θ3 = 10.1812: no high school

θ4 = 2.7386: college

θ5 = −0.7781: college at least 4 years

One possible way to interpret the results:

Apparently, what matters is the amount of police funding and the
number of residents without no high school.

But this is not justified, because the columns are not normalized.

To quantitatively justify these claims, we need to run statistical
analysis, e.g., confidence intervals, hypothesis tests.

1For this dataset, we need to add a regularization term so that
θ̂ = (ATA + λI )−1AT y . Here we set λ = 1000.
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Representation

Linear regression can be used to identify influential representations.

For example, given the features of faces, we can determine which
feature is more prominent for the query image.
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Orthogonal A

Linear regression requires us solving the system of linear equations:

θ̂ = (ATA)−1ATy .

For representation problems, one can hand-craft the representation
matrix A.

If A is orthogonal, i.e., ATA = I , then θ̂ is simplified to

θ̂ = �����(ATA)−1ATy .

Examples of orthogonal A:

Fourier matrix
Wavelet matrix
Features extracted by Principal Component Analysis (PCA)
Matrices with i.i.d. Gaussian entries. Then ATA = I with high
probability.
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Fitting and Representation

This tutorial illustrates two perspectives of linear regression:

Fitting Data: (Data Science)

Given measurements, find a line to fit the data.
A is the data matrix storing the features (or attributes).
y is the vector storing the responses.
Useful for predicting values and analyzing contributions.
E.g.: Medical data, census data, stock market, etc.

Representation: (Signal Processing, Computer Vision)

Given pre-defined features, find a representation.
A is a set of given features which can be trained or hand-crafted.
y is the query data.
Useful for dimension reduction. Decision making based on coefficients
instead of y .
E.g.: Image classification, signal processing, etc.
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