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Outline

Probability Distributions

High-dimensional Gaussian

Reference:

Dimitri Bertsekas, Introduction to Probability, Athena Scientific,
2008, 2nd Edition.

Purdue ECE 302 Course Note
https://engineering.purdue.edu/ChanGroup/ECE302
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Probability Space

Sample space Ω = set of all possible outcomes.

Event Space E = set of all events. Event is a subset in Ω.

Probability Law P = a mapping from E to [0, 1].
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Interpreting Probability

P[·] is a measure of the size of the event.

Ω = {1, 2, 3, 4, 5, 6}
E = {1}, P[E ] = 1/6

E = {1, 3}, P[E ] = 2/6

P[E1] ≤ P[E2] if E1 ⊆ E2.

Ω = [0, 1]× [0, 1]

E = shaded region, P[E ] = area.

E = {(x0, y0)}, P[E ] = 0.

P[E ] can be 0 even if E 6= ∅.
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Probability Axioms

Non-negative:
P[E ] ≥ 0

Unity:
P[Ω] = 1

Additivity: If An’s are disjoint, then

P

[
N⋃

n=1

An

]
=

N∑
n=1

P[An]

If An’s are not disjoint, then Union bound holds

P

[
N⋃

n=1

An

]
≤

N∑
n=1

P[An]
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Conditional Probability

Conditional probability of A given B is

P[A |B] =
P[A ∩ B]

P[B]

Bayes Theorem:

P[Bi |A] =
P[A |Bi ]P[Bi ]

P[A]︸︷︷︸
↑

P[A]=
N∑

n=1
P[A |Bn]P[Bn]

Therefore,

P[Bi |A] =
P[A |Bi ]P[Bi ]

N∑
n=1

P[A |Bn]P[Bn]
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Random Variable

Scalar Case: X : E → R
Encode an event to a number.
E.g., X = 1 represents “Democrat”, X = 0 represents “Republican”.
Each number is called a state.
P[X = x ] = probability of X have the state x .

Vector Case: X : E1 × . . .× EN → RN .

Encode a sequence of events to a sequence of numbers.

X =

X1

...
XN


P[X = x ] = probability of {X1 = x1, X2 = x2, . . . and XN = xN}.
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Probability Distribution

Cumulative Distribution Function:

Defined as

FX (x) = P[X ≤ x ].

For high-dimensional vectors:

FX (x) = P[X ≤ x ].

This means:

FX1,...,XN (x1, . . . , xN)

= P[X1 ≤ x1 . . . and . . . XN ≤ xN ].

Probability Density Function:

Defined as

pX (x) =
d

dx
FX (x).

For high-dimensional vectors:

pX (x) =
d

dx
FX (x)

This means:

pX1,...,XN (x1, . . . , xN)

=
∂N

∂x1 . . . ∂xN
F (x1, . . . , xN).

.
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Probability Distribution

Cumulative Distribution Function:

Defined as

FX (x) = P[X ≤ x ].

For high-dimensional vectors:

FX (x) = P[X ≤ x ].

Probability Density Function:

Defined as

pX (x) =
d

dx
FX (x).

For high-dimensional vectors:

pX (x) =
d

dx
FX (x)
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Linking CDF and PDF

Example. Consider a PDF

pX (x) =


0, x < 0,
1
2 , x = 0,
1√
2π

exp
{
− x2

2

}
, x > 0.

Then, the CDF of X is

FX (x) =

{
0, x < 0,
1
2 +

∫ x
0

1√
2π

exp
{
− s2

2

}
ds, x ≥ 0.
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Expectation

Definition

The expectation of a random variable X is

µ = E[X ] =

∫
x p(x)dx .

Second Moment:

E[X 2] =

∫
x2 p(x)dx .

Variance:

Var[X ] = E[(X − µ)2] =

∫
(x − µ)2 p(x)dx
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Properties of Expectation

(i) Function. For any function g ,

E[g(X )] =

∫
g(x)p(x)dx .

(ii) Linearity. For any function g and h,

E[g(X ) + h(X )] = E[g(X )] + E[h(X )].

(iii) Scale. For any constant c ,

E[cX ] = cE[X ].

(iv) DC Shift. For any constant c ,

E[X + c] = E[X ] + c .
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Properties of Variance

(i) Moment.
Var[X ] = E[X 2]− E[X ]2.

(ii) Scale. For any constant c ,

Var[cX ] = c2Var[X ].

(iii) DC Shift. For any constant c ,

Var[X + c] = Var[X ].
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Moment Generating Function

Definition

The moment generating function (MGF) of a random variable X is

MX (s) = E[esX ].

MGF for Gaussian is

MX (s) = exp

{
µs +

s2σ2

2

}
If X and Y are independent, then

MX+Y (s) = E[es(X+Y )] = E[esX esY ]

= E[esX ]E[esY ] = MX (s)MY (s).
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Gaussian Random Variable

X ∼ N (µ, σ2) if

pX (x) =
1√

2πσ2
exp

{
−(x − µ)2

2σ2

}
.

Transforming a Gaussian. Let Y = aX + b, then

Y ∼ N ( a µ +b, a2 σ2 )

You may check:

E[Y ] = E[aX + b] = aE[X ] + b = aµ+ b

Var[Y ] = Var[aX + b] = Var[aX ] = a2Var[X ].
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High-dimensional Gaussian

An d-dimensional Gaussian has a PDF

pX (x) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
,

where d denotes the dimensionality of the vector x .

The mean vector µ is

µ = E[X ] =

E[X1]
...

E[Xd ]


The covariance matrix Σ is

Σ = E[(X − µ)(X − µ)T ] =


Var[X1] Cov(X1,X2) . . . Cov(X1,Xd)

Cov(X2,X1) Var[X2] . . . Cov(X2,Xd)
...

...
. . .

...
Cov(Xd ,X1) Cov(XN ,X2) . . . Var[Xd ]


Σ is always positive semi-definite. (Why?)
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Special Case: Diagonal Covariance

Suppose that Xi and Xj are independent for all i 6= j .

This implies Cov(Xi ,Xj) = 0

Simplify Σ

Σ =

σ
2
1 . . . 0
...

. . .
...

0 . . . σ2d

 ,
Then, the exponential is

(x − µ)TΣ−1(x − µ) =
n∑

i=1

(xi − µi )2

σ2i
.

And hence, the PDF is

pX (x) =
n∏

i=1

1√
2πσ2i

exp

{
−(xi − µi )2

2σ2i

}
.
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Visualization

Generate 1000 random samples from a 2D Gaussian

µ =

[
0
0

]
, and Σ =

[
0.25 0.3
0.3 1

]

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x

-3
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-1

0

1

2

3

y
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MATLAB Code

% MATLAB code: Generate random numbers from multivariate Gaussian

mu = [0 0];

Sigma = [.25 .3; .3 1];

x = mvnrnd(mu,Sigma,1000);

% MATLAB code: Overlay random numbers with the Gaussian contour.

x1 = -2.5:.01:2.5;

x2 = -3.5:.01:3.5;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));

figure(1);

scatter(x(:,1),x(:,2),’rx’, ’LineWidth’, 1.5); hold on;

contour(x1,x2,F,[.001 .01 .05:.1:.95 .99 .999], ’LineWidth’, 2);

xlabel(’x’); ylabel(’y’);

set(gcf, ’Position’, [100, 100, 600, 300]);
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Conditional Gaussian

Data {x1, . . . , xN}.
Class Y ∈ {1, 2, . . . ,K}.
Likelihood:

pX |Y (x |k) = Probability of getting X given Y

Prior:
pY (k) = Probability of getting Y

Posterior:

pY |X (k |x) = Probability of getting Y given X

Related by

pY |X (k |x) =
pX |Y (x |k)pY (k)

pX (x)
=

pX |Y (x |k)pY (k)∑
k pX |Y (x |k)pY (k)
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Example

Two Gaussian N (x | µ1,Σ1) and N (x | µ2,Σ2).

Prior probability of getting a class is

pY (1) = π1 and pY (2) = π2.

The likelihood term is

pX |Y (x |k) = N (x | µk ,Σk)

=
1√

(2π)d |Σk |
exp

{
−1

2
(x − µk)TΣ−1

k (x − µk)

}
The posterior is

pY |X (k|x) =
pX |Y (x |k)pY (k)

pX (x)

=

1√
(2π)d |Σk |

exp
{
− 1

2
(x − µk)TΣ−1

k (x − µk)
}
· πk

K∑
k=1

1√
(2π)d |Σk |

exp
{
− 1

2
(x − µk)TΣ−1

k (x − µk)
}
· πk
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Negative Log-Likelihood

Negative Log-Likelihood for Gaussian:

− log pX |Y (x |k)

= − log

(
1√

(2π)d |Σk |
exp

{
−1

2
(x − µk)TΣ−1k (x − µk)

})
=

1

2
(x − µk)TΣ−1k (x − µk)︸ ︷︷ ︸

contains x

−n

2
log 2π − 1

2
log |Σk |︸ ︷︷ ︸

no x

.

(x − µ)TΣ−1(x − µ) ≥ 0, always.√
(x − µ)TΣ−1(x − µ) is called Mahalanobis distance.
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Geometry of Gaussian

Perform eigen-decomposition

Σ = UΛUT

=

 | | |
u1 u2 . . . un

| | |



λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 . . . . . . λn



− uT

1 −
− uT

2 −
...

− uT
n −

 .
u i = orientation

λi = radius
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Geometry of Gaussian

Special Case: Xi ’s are independent

Σ =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . . . . 1



λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 . . . . . . λn




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . . . . 1

 .
Ellipse; Standard bases; Different radii.
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Transformation of Gaussian

Your are given {X 1, . . . ,XN}. All X j are generated from N (0, I ).

You want {Y 1, . . . ,Y N}, where Y j ∼ N (µ,Σ).

But you only have {X 1, . . . ,XN}.
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Transformation of Gaussian

How about this? Let
Y = AX + b

Can we find A and b?

E[Y ] = E[AX + b] = AE[X ]︸ ︷︷ ︸
=0

+ b = b.

Cov(Y ) = E[(Y − E[Y ])(Y − E[Y ])T ]

= E[(AX + b − b)(AX + b − b)T ]

= E[(AX )(AX )T ] = E[AXXTAT ]

= AE[XXT ]AT = AAT = Σ.

So here is the choice: b = µ, and A = Σ
1
2 .
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Inverse Transform

If we have Y ∼ N (µ,Σ), how to transform Y to X so that X ∼ N (0, I )?

The inverse transform is

X = Σ−
1
2 (Y − µ)

Checking: If Y ∼ N (µ,Σ), then

E[X ] = E[Σ−
1
2 (Y − µ)] = Σ−1(E[Y ]︸ ︷︷ ︸

=µ

− µ) = 0.

Cov[X ] = E[(X − E[X ])(X − E[X ])T ]

= E[(Σ−
1
2 (Y − µ))(Σ−

1
2 (Y − µ))T ]

= E[Σ−
1
2 (Y − µ)(Y − µ)TΣ−

1
2 ]

= Σ−
1
2E[(Y − µ)(Y − µ)T ]︸ ︷︷ ︸

=Σ

Σ−
1
2 = I .
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