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Outline

@ Probability Distributions

@ High-dimensional Gaussian

Reference:
@ Dimitri Bertsekas, Introduction to Probability, Athena Scientific,
2008, 2nd Edition.

e Purdue ECE 302 Course Note
https://engineering.purdue.edu/ChanGroup/ECE302
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https://engineering.purdue.edu/ChanGroup/ECE302

-
Probability Space

@ Sample space 2 = set of all possible outcomes.
@ Event Space £ = set of all events. Event is a subset in €.

@ Probability Law P = a mapping from & to [0, 1].

So T
l‘\;“:

Sample Space
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Interpreting Probability

IP[-] is a measure of the size of the event.

o Q=1{1,2,3,4,5,6}
o E={1}, P[E]=1/6
o E=1{1,3}, P[E] =2/6

e Q=10,1] x [0,1]
e E = shaded region, P[E] = area.
o E={(x0, )} P[E]=0.

° PE] < P[E]if & C £ @ P[E] can be 0 even if E # 0.
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Probability Axioms

o Non-negative:

P[E] >0
o Unity:

P[Q] =1
o Additivity: If A,'s are disjoint, then

N N
P [U A,,] = ZIF’[A,,]
n=1 n=1

If A,'s are not disjoint, then Union bound holds

N N
P [U An] <> P[A]
n=1 n=1
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Conditional Probability

e Conditional probability of A given B is

P[AN B]

PIAIB] =~

@ Bayes Theorem:
P[A| Bi|P[Bj]
PlA]
~—~
T
N
]P’[A]:n;1 P[A| Bs]P[Bx]

P(B; | A] =

@ Therefore,
P[A| Bi]P[B)]
N
nZ::1 P[A| B,]P[Bn]

P[B; | Al =
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Random Variable

@ Scalar Case: X: €& — R

o Encode an event to a number.

E.g., X =1 represents “Democrat”, X = 0 represents “Republican”.
Each number is called a state.

P[X = x] = probability of X have the state x.

@ Vector Case: X : & x ... x Ey — RN,
e Encode a sequence of events to a sequence of numbers.

X1
x=:
Xn

o P[X = x] = probability of {X; = x1, Xo =x2, ... and Xy = xn}.
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Probability Distribution

Cumulative Distribution Function: Probability Density Function:
@ Defined as @ Defined as
d
Fx(x) = P[X < x]. px(x) = - Fx(x).

@ For high-dimensional vectors: @ For high-dimensional vectors:

Fx(x) =P[X < x]. d
PX(X) = TFX(X)
. X

@ This means:

@ This means:
Fxgoooxy (X155 xw)

= P[Xl S X1 ... and. .. XN S XN]. le’“"XN(Xl’ e ’XN)
8N
=—F—F .
6x1...8xN (Xh ,XN)
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-
Probability Distribution

Cumulative Distribution Function: Probability Density Function:
@ Defined as @ Defined as
d
Fx(x) =P[X < x]. px(x) = EFX(X)'

@ For high-dimensional vectors: @ For high-dimensional vectors:

Fx(x) =P[X < x].

px(x) = 2 Fx(x)
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Linking CDF and PDF

Example. Consider a PDF
’ X < 07

) XZO?

\/lszexp{ %2}, x > 0.

px(x) =
Then, the CDF of X is

F 0 x <0
x(x) = R . exp{ %} ds, x > 0.
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Expectation

Definition

The expectation of a random variable X is

p=E[X]= /x p(x)dx.

@ Second Moment:
E[X?] = /x2 p(x)dx.

e Variance:

VarlX] = E[(X ~ 1] = [ (x = n)? plx)ox
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Properties of Expectation

(i) Function. For any function g,

Blg()] = [ (:p(x)dx.
(ii) Linearity. For any function g and h,
Elg(X) + h(X)] = Elg(X)] + E[A(X)]
(iii) Scale. For any constant c,
E[cX] = cE[X].
(iv) DC Shift. For any constant c,
E[X + c] = E[X] + c.
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Properties of Variance

(i) Moment.
Var[X] = E[X?] — E[X]?.

(ii) Scale. For any constant c,
Var[cX] = c*Var[X].
(iii) DC Shift. For any constant c,

Var[X + c] = Var[X].
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Moment Generating Function

Definition

The moment generating function (MGF) of a random variable X is

Mx (s) = E[e™X].

o MGF for Gaussian is

2 2
Mx(s) = exp {,us + 520}

o If X and Y are independent, then

My (s) = B[] = BeXe]

— E[e]E[eY] = Mx(s)My (s).
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Gaussian Random Variable

o X ~ N(u,o?) if

px(x) = —= . exp{—(x_ﬂ)z}-

2mo 202

o Transforming a Gaussian. Let Y = aX + b, then
Y ~N(ap+b, a°o?)
You may check:

E[Y] =E[aX + bl = aE[X]+ b=au+ b
Var[Y] = Var[aX + b] = Var[aX] = a°Var[X].
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High-dimensional Gaussian
An d-dimensional Gaussian has a PDF

1 1 Te—1/
PX(X)—WEXP{—E(X—N) I (x N)}7

where d denotes the dimensionality of the vector x.

@ The mean vector pu is

E[X1]
p=E[X]=| :
E[X,]
@ The covariance matrix X is
Var[Xi] Cov(X1, X2) ... Cov(Xi, Xq)
T COV()(Q7 X1) Var[XQ] P COV(XQ, Xd)
T = E[(X - p)(X — )] = | ; ) ;
COV(Xd, Xl) COV()(N7 XQ) e Var[Xd]

@ X is always positive semi-definite. (Why?)
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Special Case: Diagonal Covariance

@ Suppose that X; and X; are independent for all i # ;.
@ This implies Cov(X;, X;) =0
Simplify X

Y —

Then, the exponential is
Te-1 e (= pi)?
(=) E x - ) = 0P

@ And hence, the PDF is
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Visualization

@ Generate 1000 random samples from a 2D Gaussian

o u= {8} and X = [06?35 013}
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|
MATLAB Code

% MATLAB code: Generate random numbers from multivariate Gaussian
mu = [0 0];

Sigma = [.25 .3; .3 1];

x mvnrnd (mu, Sigma, 1000) ;

% MATLAB code: Overlay random numbers with the Gaussian contour.
x1 = -2.5:.01:2.5;

x2 = -3.5:.01:3.5;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf ([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));

figure(1);

scatter(x(:,1),x(:,2),’rx’, ’LineWidth’, 1.5); hold on;
contour(x1,x2,F,[.001 .01 .05:.1:.95 .99 .999], ’LineWidth’, 2);
xlabel(’x’); ylabel(’y’);

set(gcf, ’Position’, [100, 100, 600, 300]1);
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Conditional Gaussian

e Data {x1,...,xn}.
e Class Y € {1,2,...,K}.
o Likelihood:

px|y(x|k) = Probability of getting X given Y
@ Prior:

py (k) = Probability of getting Y

o Posterior:

py|x(k|x) = Probability of getting Y given X
o Related by

(K|x) = Pxjy(x[K)py (k) _ pxjy(x[k)py (k)
PYIx px(x) 5 Pxiy (xK)py (K)
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Example

@ Two Gaussian N'(x | gy, X1) and N(x | p,, X2).
Prior probability of getting a class is

py(l) = 71 and py(2) = T2.

@ The likelihood term is
Pxy(x|k) = N(x | py, Xk)

1 1 Te—1
:WGXP{—E(X—MH X, (X—Mk)}

@ The posterior is
px|v(x|k)py (k)
PX(X)
T
dlz exp {—5(x — ) " (x — )}k

pyix(k|x) =

K
kz,l\/m exp { =5 (x — ) "I (x — ) } - e
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Negative Log-Likelihood

Negative Log-Likelihood for Gaussian:

— log px|v(x|k)

=—lo ;ex —lx— Ty (x—
= |g< N p{ 5 (¢ = ) "B m)})

1 _ n
= E(X - Mk)TZkl(X ) —§|

contains x no x

1
og2m — 5 log [X].

o (x — )X Yx — ) >0, always.
° \/(x — p)TZ"Y(x — p) is called Mahalanobis distance.
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Geometry of Gaussian

@ Perform eigen-decomposition

T = UNUT
M 0 ... 01— o -
I I'1T1o x ... o| |- uf -
= (U1 u2 ... Uy . . . . .
[ | o :
0 Al = o] -

@ u; = orientation
@ )\; = radius
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Geometry of Gaussian

@ Special Case: X;'s are independent

1 0 ... Of|A O ... O 1.0 ... 0
0 1 ... 0[O0 X ... OJ]J0 1 ... 0
= . . . . N I :
0o ... ... 1 0 ... ... X |O ... .01

o Ellipse; Standard bases; Different radii.

-, = (1,07
ZTO?T | ek
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Transformation of Gaussian

@ Your are given {X1,..., Xy}. All X; are generated from N (0, /).
e You want {Y1,..., Yy}, where Y ~ N(u, X).
e But you only have {X1,..., Xpn}.
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Transformation of Gaussian

How about this? Let
Y =AX-+b

Can we find A and b?

E[Y] = E[AX + b] = AE[X] + b = b.
7

E[(Y —E[Y])(Y —E[Y])T]

E[(AX + b — b)(AX + b— b)7]

E[(AX)(AX)T] = E[AXXTAT]

AEXXT]AT = AAT =%

Cov(Y)

So here is the choice: b= u, and A = ¥
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Inverse Transform
If we have Y ~ N (u, X), how to transform Y to X so that X ~ N(0,1)?

The inverse transform is
X=55(Y - p)
Checking: If Y ~ N (p, X), then

1

E[X] = B[E3(Y - p)] = ZHE[Y] - ) = 0.
Cov[X] = E[(X — E[X])(X — E[X])"]
= E[(Z72(Y — w)(Z2(Y — )7
= E[Z (Y — p)(Y — p) E 7]
=EE[(Y —p)(Y - ) |E T =1,

=X
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