ECE 595: Machine Learning I Tutorial 02: Probability Review

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Outline

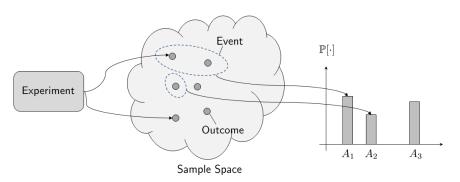
- Probability Distributions
- High-dimensional Gaussian

Reference:

- Dimitri Bertsekas, Introduction to Probability, Athena Scientific, 2008, 2nd Edition.
- Purdue ECE 302 Course Note
 https://engineering.purdue.edu/ChanGroup/ECE302

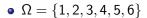
Probability Space

- Sample space $\Omega = \text{set of all possible outcomes}$.
- Event Space $\mathcal{E} = \operatorname{set}$ of all events. Event is a subset in Ω .
- ullet Probability Law $\mathbb{P}=\mathsf{a}$ mapping from \mathcal{E} to [0,1].



Interpreting Probability

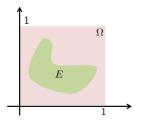
 $\mathbb{P}[\cdot]$ is a **measure** of the size of the event.



•
$$E = \{1\}, \mathbb{P}[E] = 1/6$$

•
$$E = \{1, 3\}, \mathbb{P}[E] = 2/6$$

•
$$\mathbb{P}[E_1] \leq \mathbb{P}[E_2]$$
 if $E_1 \subseteq E_2$.



- $\bullet \ \Omega = [0,1] \times [0,1]$
- ullet E= shaded region, $\mathbb{P}[E]=$ area.
- $E = \{(x_0, y_0)\}, \mathbb{P}[E] = 0.$
- $\mathbb{P}[E]$ can be 0 even if $E \neq \emptyset$.

Probability Axioms

Non-negative:

$$\mathbb{P}[E] \geq 0$$

Unity:

$$\mathbb{P}[\Omega] = 1$$

• **Additivity**: If A_n 's are disjoint, then

$$\mathbb{P}\left[\bigcup_{n=1}^{N}A_{n}\right]=\sum_{n=1}^{N}\mathbb{P}[A_{n}]$$

• If A_n 's are not disjoint, then Union bound holds

$$\mathbb{P}\left[\bigcup_{n=1}^{N} A_n\right] \leq \sum_{n=1}^{N} \mathbb{P}[A_n]$$

Conditional Probability

Conditional probability of A given B is

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

Bayes Theorem:

$$\mathbb{P}[B_i \mid A] = \frac{\mathbb{P}[A \mid B_i] \mathbb{P}[B_i]}{\underbrace{\mathbb{P}[A]}_{\uparrow}}$$
$$\mathbb{P}[A] = \sum_{n=1}^{N} \mathbb{P}[A \mid B_n] \mathbb{P}[B_n]$$

Therefore,

$$\mathbb{P}[B_i \mid A] = \frac{\mathbb{P}[A \mid B_i] \mathbb{P}[B_i]}{\sum\limits_{n=1}^{N} \mathbb{P}[A \mid B_n] \mathbb{P}[B_n]}$$

Random Variable

- Scalar Case: $X: \mathcal{E} \to \mathbb{R}$
 - Encode an event to a number.
 - E.g., X = 1 represents "Democrat", X = 0 represents "Republican".
 - Each number is called a **state**.
 - $\mathbb{P}[X = x]$ = probability of X have the state x.
- Vector Case: $\boldsymbol{X}: \mathcal{E}_1 \times \ldots \times \mathcal{E}_N \to \mathbb{R}^N$.
 - Encode a sequence of events to a sequence of numbers.

$$\boldsymbol{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_N \end{bmatrix}$$

• $\mathbb{P}[X = x] = \text{probability of } \{X_1 = x_1, X_2 = x_2, \dots \text{ and } X_N = x_N\}.$

Probability Distribution

Cumulative Distribution Function:

Defined as

$$F_X(x) = \mathbb{P}[X \leq x].$$

For high-dimensional vectors:

$$F_{X}(x) = \mathbb{P}[X \leq x].$$

• This means:

$$F_{X_1,...,X_N}(x_1,...,x_N)$$

= $\mathbb{P}[X_1 \le x_1...$ and ... $X_N \le x_N]$.

Probability Density Function:

Defined as

$$p_X(x) = \frac{d}{dx} F_X(x).$$

For high-dimensional vectors:

$$p_X(x) = \frac{d}{dx} F_X(x)$$

This means:

$$p_{X_1,...,X_N}(x_1,...,x_N)$$

$$= \frac{\partial^N}{\partial x_1...\partial x_N} F(x_1,...,x_N).$$

Probability Distribution

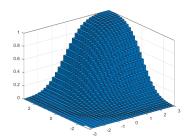
Cumulative Distribution Function:

Defined as

$$F_X(x) = \mathbb{P}[X \leq x].$$

For high-dimensional vectors:

$$F_X(x) = \mathbb{P}[X \leq x].$$



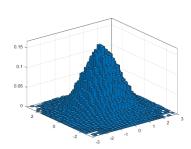
Probability Density Function:

Defined as

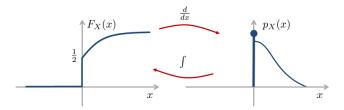
$$p_X(x) = \frac{d}{dx} F_X(x).$$

For high-dimensional vectors:

$$p_X(x) = \frac{d}{dx} F_X(x)$$



Linking CDF and PDF



Example. Consider a PDF

$$p_X(x) = egin{cases} 0, & x < 0, \ rac{1}{2}, & x = 0, \ rac{1}{\sqrt{2\pi}} \exp\left\{-rac{x^2}{2}
ight\}, & x > 0. \end{cases}$$

Then, the CDF of X is

$$F_X(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2} + \int_0^x \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{s^2}{2}\right\} ds, & x \ge 0. \end{cases}$$

Expectation

Definition

The **expectation** of a random variable X is

$$\mu = \mathbb{E}[X] = \int x \, p(x) dx.$$

Second Moment:

$$\mathbb{E}[X^2] = \int x^2 \, p(x) dx.$$

Variance:

$$Var[X] = \mathbb{E}[(X - \mu)^2] = \int (x - \mu)^2 p(x) dx$$

Properties of Expectation

(i) Function. For any function g,

$$\mathbb{E}[g(X)] = \int g(x)p(x)dx.$$

(ii) **Linearity**. For any function g and h,

$$\mathbb{E}[g(X) + h(X)] = \mathbb{E}[g(X)] + \mathbb{E}[h(X)].$$

(iii) **Scale**. For any constant c,

$$\mathbb{E}[cX] = c\mathbb{E}[X].$$

(iv) **DC Shift**. For any constant c,

$$\mathbb{E}[X+c]=\mathbb{E}[X]+c.$$

Properties of Variance

(i) Moment.

$$\mathrm{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

(ii) **Scale**. For any constant c,

$$Var[cX] = c^2 Var[X].$$

(iii) **DC Shift**. For any constant c,

$$Var[X+c] = Var[X].$$

Moment Generating Function

Definition

The **moment generating function** (MGF) of a random variable X is

$$M_X(s) = \mathbb{E}[e^{sX}].$$

MGF for Gaussian is

$$M_X(s) = \exp\left\{\mu s + \frac{s^2 \sigma^2}{2}\right\}$$

• If X and Y are independent, then

$$M_{X+Y}(s) = \mathbb{E}[e^{s(X+Y)}] = \mathbb{E}[e^{sX}e^{sY}]$$

= $\mathbb{E}[e^{sX}]\mathbb{E}[e^{sY}] = M_X(s)M_Y(s).$

Gaussian Random Variable

• $X \sim \mathcal{N}(\mu, \sigma^2)$ if

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}.$$

• Transforming a Gaussian. Let Y = aX + b, then

$$Y \sim \mathcal{N}(a \mu + b, a^2 \sigma^2)$$

You may check:

$$\mathbb{E}[Y] = \mathbb{E}[aX + b] = a\mathbb{E}[X] + b = a\mu + b$$
$$\operatorname{Var}[Y] = \operatorname{Var}[aX + b] = \operatorname{Var}[aX] = a^{2}\operatorname{Var}[X].$$

High-dimensional Gaussian

An d-dimensional Gaussian has a PDF

$$p_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{\Sigma}|}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\},$$

where d denotes the dimensionality of the vector x.

ullet The mean vector μ is

$$oldsymbol{\mu} = \mathbb{E}[oldsymbol{X}] = egin{bmatrix} \mathbb{E}[X_1] \ dots \ \mathbb{E}[X_d] \end{bmatrix}$$

• The covariance matrix Σ is

$$\mathbf{\Sigma} = \mathbb{E}[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] = \begin{bmatrix} \operatorname{Var}[X_1] & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_d) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}[X_2] & \dots & \operatorname{Cov}(X_2, X_d) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_d, X_1) & \operatorname{Cov}(X_N, X_2) & \dots & \operatorname{Var}[X_d] \end{bmatrix}$$

• Σ is always positive semi-definite. (Why?)

Special Case: Diagonal Covariance

- Suppose that X_i and X_j are independent for all $i \neq j$.
- This implies $Cov(X_i, X_j) = 0$
- ullet Simplify $oldsymbol{\Sigma}$

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_d^2 \end{bmatrix},$$

Then, the exponential is

$$(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = \sum_{i=1}^n \frac{(x_i - \mu_i)^2}{\sigma_i^2}.$$

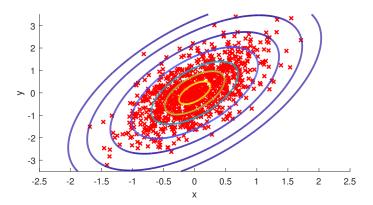
And hence, the PDF is

$$p_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \exp\left\{-\frac{(x_{i} - \mu_{i})^{2}}{2\sigma_{i}^{2}}\right\}.$$

Visualization

• Generate 1000 random samples from a 2D Gaussian

•
$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, and $\mathbf{\Sigma} = \begin{bmatrix} 0.25 & 0.3 \\ 0.3 & 1 \end{bmatrix}$



MATLAB Code

```
% MATLAB code: Generate random numbers from multivariate Gaussian
mu = [0 0];
Sigma = [.25 .3; .3 1];
x = mvnrnd(mu,Sigma,1000);
```

```
% MATLAB code: Overlay random numbers with the Gaussian contour.
x1 = -2.5:.01:2.5;
x2 = -3.5:.01:3.5;
[X1,X2] = meshgrid(x1,x2);
F = mvnpdf([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));
figure(1);
scatter(x(:,1),x(:,2),'rx', 'LineWidth', 1.5); hold on;
contour(x1,x2,F,[.001 .01 .05:.1:.95 .99 .999], 'LineWidth', 2);
xlabel('x'); ylabel('y');
set(gcf, 'Position', [100, 100, 600, 300]);
```

Conditional Gaussian

- Data $\{x_1, ..., x_N\}$.
- Class $Y \in \{1, 2, ..., K\}$.
- Likelihood:

$$p_{X|Y}(x|k) = \text{Probability of getting } X \text{ given } Y$$

Prior:

$$p_Y(k)$$
 = Probability of getting Y

Posterior:

$$p_{Y|X}(k|x) = \text{Probability of getting } Y \text{ given } X$$

Related by

$$p_{Y|X}(k|x) = \frac{p_{X|Y}(x|k)p_Y(k)}{p_X(x)} = \frac{p_{X|Y}(x|k)p_Y(k)}{\sum_k p_{X|Y}(x|k)p_Y(k)}$$

Example

- Two Gaussian $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ and $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$.
- Prior probability of getting a class is

$$p_Y(1) = \pi_1$$
 and $p_Y(2) = \pi_2$.

The likelihood term is

$$egin{aligned} p_{oldsymbol{X}|Y}(oldsymbol{x}|k) &= \mathcal{N}(oldsymbol{x} \mid oldsymbol{\mu}_k, oldsymbol{\Sigma}_k) \ &= rac{1}{\sqrt{(2\pi)^d |oldsymbol{\Sigma}_k|}} \exp\left\{-rac{1}{2}(oldsymbol{x} - oldsymbol{\mu}_k)^T oldsymbol{\Sigma}_k^{-1} (oldsymbol{x} - oldsymbol{\mu}_k)
ight\} \end{aligned}$$

The posterior is

$$p_{Y|X}(k|x) = \frac{p_{X|Y}(x|k)p_{Y}(k)}{p_{X}(x)}$$

$$= \frac{\frac{1}{\sqrt{(2\pi)^{d}|\mathbf{\Sigma}_{k}|}} \exp\left\{-\frac{1}{2}(x-\mu_{k})^{T}\mathbf{\Sigma}_{k}^{-1}(x-\mu_{k})\right\} \cdot \pi_{k}}{\sum_{k=1}^{K} \frac{1}{\sqrt{(2\pi)^{d}|\mathbf{\Sigma}_{k}|}} \exp\left\{-\frac{1}{2}(x-\mu_{k})^{T}\mathbf{\Sigma}_{k}^{-1}(x-\mu_{k})\right\} \cdot \pi_{k}}$$

Negative Log-Likelihood

Negative Log-Likelihood for Gaussian:

$$\begin{aligned} &-\log p_{\boldsymbol{X}|Y}(\boldsymbol{x}|k) \\ &= -\log \left(\frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}_k|}} \exp \left\{ -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k) \right\} \right) \\ &= \underbrace{\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k)}_{\text{contains } \boldsymbol{x}} \underbrace{-\frac{n}{2} \log 2\pi - \frac{1}{2} \log |\boldsymbol{\Sigma}_k|}_{\text{no } \boldsymbol{x}}. \end{aligned}$$

- $(\mathbf{x} \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu}) \geq 0$, always.
- $\sqrt{(\mathbf{x} \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} \mathbf{\mu})}$ is called Mahalanobis distance.

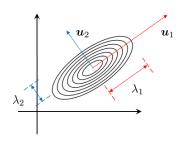
Geometry of Gaussian

Perform eigen-decomposition

$$\mathbf{\Sigma} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$$

$$=\begin{bmatrix} \begin{vmatrix} & & & & & \\ & & & & \\ \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_n \\ & & & & \end{vmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \lambda_n \end{bmatrix} \begin{bmatrix} - & \mathbf{u}_1^T & - \\ - & \mathbf{u}_2^T & - \\ \vdots & \vdots & \ddots & \vdots \\ - & \mathbf{u}_n^T & - \end{bmatrix}.$$

- $u_i = \text{orientation}$
- $\lambda_i = \text{radius}$

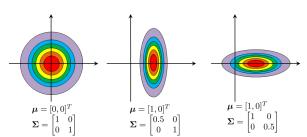


Geometry of Gaussian

• Special Case: X_i 's are independent

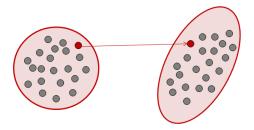
$$\mathbf{\Sigma} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & \lambda_n \end{bmatrix} \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & 1 \end{bmatrix}.$$

Ellipse; Standard bases; Different radii.



Transformation of Gaussian

- Your are given $\{X_1, \dots, X_N\}$. All X_j are generated from $\mathcal{N}(\mathbf{0}, \mathbf{I})$.
- You want $\{ m{Y}_1, \dots, m{Y}_N \}$, where $m{Y}_j \sim \mathcal{N}(m{\mu}, m{\Sigma})$.
- But you only have $\{\boldsymbol{X}_1,\ldots,\boldsymbol{X}_N\}$.



Transformation of Gaussian

How about this? Let

$$Y = AX + b$$

Can we find \boldsymbol{A} and \boldsymbol{b} ?

$$\mathbb{E}[Y] = \mathbb{E}[AX + b] = A \underbrace{\mathbb{E}[X]}_{=0} + b = b.$$

$$\mathsf{Cov}(Y) = \mathbb{E}[(Y - \mathbb{E}[Y])(Y - \mathbb{E}[Y])^T]$$

$$= \mathbb{E}[(AX + b - b)(AX + b - b)^T]$$

$$= \mathbb{E}[(AX)(AX)^T] = \mathbb{E}[AXX^TA^T]$$

$$= A\mathbb{E}[XX^T]A^T = AA^T = \Sigma.$$

So here is the choice: ${m b}={m \mu}$, and ${m A}={m \Sigma}^{1\over 2}$.

Inverse Transform

If we have $m{Y} \sim \mathcal{N}(m{\mu}, m{\Sigma})$, how to transform $m{Y}$ to $m{X}$ so that $m{X} \sim \mathcal{N}(m{0}, m{I})$?

The inverse transform is

$$oldsymbol{X} = oldsymbol{\Sigma}^{-rac{1}{2}} (oldsymbol{Y} - oldsymbol{\mu})$$

Checking: If $Y \sim \mathcal{N}(\mu, \Sigma)$, then

$$\mathbb{E}[oldsymbol{X}] = \mathbb{E}[oldsymbol{\Sigma}^{-rac{1}{2}}(oldsymbol{Y} - oldsymbol{\mu})] = oldsymbol{\Sigma}^{-1}(\underbrace{\mathbb{E}[oldsymbol{Y}]}_{=oldsymbol{\mu}} - oldsymbol{\mu}) = oldsymbol{0}.$$

$$\begin{aligned} \mathsf{Cov}[\boldsymbol{X}] &= \mathbb{E}[(\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])(\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])^T] \\ &= \mathbb{E}[(\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{Y} - \boldsymbol{\mu}))(\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{Y} - \boldsymbol{\mu}))^T] \\ &= \mathbb{E}[\boldsymbol{\Sigma}^{-\frac{1}{2}}(\boldsymbol{Y} - \boldsymbol{\mu})(\boldsymbol{Y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-\frac{1}{2}}] \\ &= \boldsymbol{\Sigma}^{-\frac{1}{2}} \underline{\mathbb{E}[(\boldsymbol{Y} - \boldsymbol{\mu})(\boldsymbol{Y} - \boldsymbol{\mu})^T]} \boldsymbol{\Sigma}^{-\frac{1}{2}} = \boldsymbol{I}. \end{aligned}$$