ECE 595: Machine Learning I Tutorial 01: Linear Algebra

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Outline

- Norm
- Cauchy Inequality
- Eigen-decomposition
- Positive Definite Matrices
- Matrix Calculus

Reference:

- Gilbert Strang, Linear Algebra and Its Applications, 5th Edition.
- Carl Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
- http://cs229.stanford.edu/section/cs229-linalg.pdf
- https:
 //www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Basic Notation

- Vector: $\mathbf{x} \in \mathbb{R}^n$
- Matrix: $\mathbf{A} \in \mathbb{R}^{m \times n}$; Entries are a_{ij} or $[\mathbf{A}]_{ij}$.
- Transpose:

$$\mathbf{A} = \begin{bmatrix} | & | & & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \\ | & | & & | \end{bmatrix}, \text{ and } \mathbf{A}^T = \begin{bmatrix} - & \mathbf{a}_1^T & - \\ - & \mathbf{a}_2^T & - \\ & \vdots \\ - & \mathbf{a}_n^T & - \end{bmatrix}.$$

- Column: a_i is the i-th column of A
- Identity matrix I
- All-one vector 1 and all-zero vector 0
- Standard basis e_i.

Norm

- ||x|| is the *length* of x.
- We use ℓ_p -norm

Definition

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p},$$
 (1)

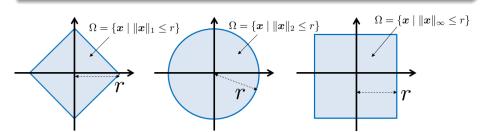


Figure: The shapes of Ω defined using different ℓ_p -norms.

The ℓ_2 -norm

Also called the Euclidean norm:

Definition

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}.$$
 (2)

• The set $\Omega = \{ \boldsymbol{x} \mid ||\boldsymbol{x}||_2 \le r \}$ defines a circle:

$$\Omega = \{ \boldsymbol{x} \mid \|\boldsymbol{x}\|_2 \le r \} = \{ (x_1, x_2) \mid x_1^2 + x_2^2 \le r^2 \}.$$

- $f(x) = ||x||_2$ is not the same as $f(x) = ||x||_2^2$.
- Triangle inequality holds:

$$\|\mathbf{x} + \mathbf{y}\|_2 \le \|\mathbf{x}\|_2 + \|\mathbf{y}\|_2.$$

The ℓ_1 -norm

Definition

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|. \tag{3}$$

- The set $\Omega = \{ \boldsymbol{x} \mid \|\boldsymbol{x}\|_1 \leq r \}$ is a diamond.
- $\|\mathbf{x}\|_1 = r$ is equivalent to

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| = r.$$

- If $x_1 > 0$ and $x_2 > 0$, then the sign has no effect. This is a line in the 1st quadrant.
- MATLAB: norm(x, 1)
- Python: numpy.linalg.norm(x, ord=1)

Sparsity

- Roughly speaking, a vector x is sparse if it contains many zeros.
- $\|\cdot\|_1$ promotes sparsity:
- If \mathbf{x} is the parameter vector, minimizing a cost function over a constraint $\|\mathbf{x}\|_1 \le \tau$ leads to a sparse \mathbf{x} .

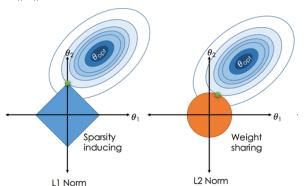


Figure: ℓ_1 -norm promotes sparsity whereas ℓ_2 -norm leads to weight sharing. Figure is read taken from http://www.ds100.org/

The ℓ_{∞} -norm

Definition

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|. \tag{4}$$

ullet A hand-waving argument: If we set $p o \infty$

$$\lim_{p \to \infty} \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p} \tag{5}$$

then the largest term $|x_i|^p$ will dominate eventually.

- The set $\Omega = \{ \boldsymbol{x} \mid \|\boldsymbol{x}\|_{\infty} \leq r \}$ is a square
- We can show the following inequality

$$\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_{2} \le \|\mathbf{x}\|_{1},$$
 (6)

and $\Omega_1 \subseteq \Omega_2 \subseteq \Omega_\infty$.

Holder's Inequality and Cauchy-Schwarz Inequality

Theorem (Holder's Inequality)

Let $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$. Then,

$$|\mathbf{x}^T \mathbf{y}| \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q \tag{7}$$

for any p and q such that $\frac{1}{p} + \frac{1}{q} = 1$, where $p \ge 1$. Equality holds if and only if $|x_i|^p = \alpha |y_i|^q$ for some scalar α and for all $i = 1, \ldots, n$.

Corollary (Cauchy-Schwarz Inequality)

Let $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$. Then,

$$|\mathbf{x}^T \mathbf{y}| \le \|\mathbf{x}\|_2 \|\mathbf{y}\|_2,\tag{8}$$

where the equality holds if and only if $\mathbf{x} = \alpha \mathbf{y}$ for some scalar α .

Geometry of Cauchy-Schwarz Inequality

- $\mathbf{x}^T \mathbf{y}/(\|\mathbf{x}\|_2 \|\mathbf{y}\|_2)$ defines the cosine angle between the two vectors \mathbf{x} and \mathbf{y} .
- Cosine is always less than 1. So is $\mathbf{x}^T \mathbf{y}/(\|\mathbf{x}\|_2 \|\mathbf{y}\|_2)$.
- The equality holds if and only if the two vectors are parallel.

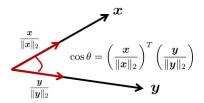


Figure: Pictorial interpretation of Cauchy-Schwarz inequality. The inner product defines the cosine angle, which by definition must be less than 1.

Eigenvalue and Eigenvector

Definition

Given a square matrix $\pmb{A} \in \mathbb{R}^{n \times n}$, the vector $\pmb{u} \in \mathbb{R}^n$ (with $\pmb{u} \neq \pmb{0}$) is called the **eigenvector** of \pmb{A} if

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u},\tag{9}$$

for some $\lambda \in \mathbb{R}$. The scalar λ is called the **eigenvalue** associated with \boldsymbol{u} .

The following conditions are equivalent

- There exists $\mathbf{u} \neq 0$ such that $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$;
- There exists $\mathbf{u} \neq 0$ such that $(\mathbf{A} \lambda \mathbf{I})\mathbf{u} = \mathbf{0}$;
- $(\mathbf{A} \lambda \mathbf{I})$ is not invertible;
- $\det(\mathbf{A} \lambda \mathbf{I}) = 0$;

Exercise: Prove these results.

Eigen-Decomposition for Symmetric Matrices

- Not all matrices have eigenvalues.
- For example, the matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ does not have an eigenvalue.
- If **A** is symmetric, then eigenvalues exist and are real.

Theorem

If **A** is symmetric, then all the eigenvalues are real, and there exists **U** such that $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ and $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T$:

$$\mathbf{A} = \underbrace{\begin{bmatrix} | & | & | \\ | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_n \\ | & | & | \end{bmatrix}}_{\mathbf{U}} \underbrace{\begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & \lambda_n \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} - & \mathbf{u}_1^T & - \\ - & \mathbf{u}_2^T & - \\ \vdots & \\ - & \mathbf{u}_n^T & - \end{bmatrix}}_{\mathbf{U}^T}. \tag{10}$$

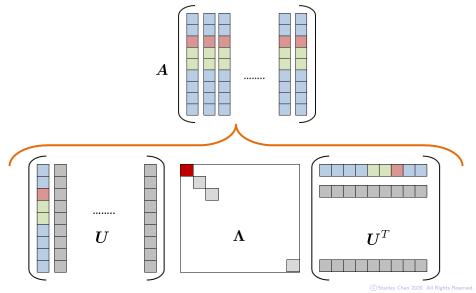
Basis Representation

- Eigenvectors satisfy $\boldsymbol{U}^T \boldsymbol{U} = \boldsymbol{I}$.
- This is equivalent to $\boldsymbol{u}_i^T \boldsymbol{u}_j = 1$ if i = j and $\boldsymbol{u}_i^T \boldsymbol{u}_j = 0$ if $i \neq j$.
- U can be served as basis

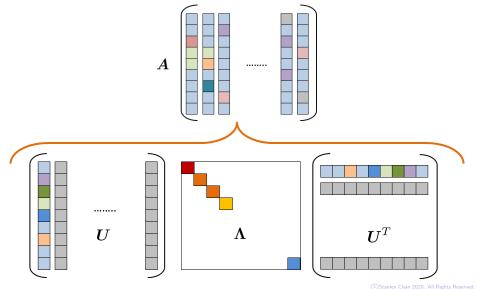
$$\mathbf{x} = \sum_{j=1}^{n} \alpha_j \mathbf{u}_j, \tag{11}$$

• $\alpha_j = \boldsymbol{u}_i^T \boldsymbol{x}$ is called the basis coefficient.

If Columns are Similar:



If Columns are Different:



Positive Semi-Definite

Definition (Positive Semi-Definite)

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semi-definite if

$$\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} \ge 0 \tag{12}$$

for any $x \in \mathbb{R}^n$. **A** is positive definite if $x^T A x > 0$ for any $x \in \mathbb{R}^n$.

Theorem

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semi-definite if and only if

$$\lambda_i(\mathbf{A}) \ge 0 \tag{13}$$

for all i = 1, ..., n, where $\lambda_i(\mathbf{A})$ denotes the i-th eigenvalue of \mathbf{A} .

Positive Semi-Definite

Proof.

By definition of eigenvalue and eigenvector, we have that $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$ where λ_i is the eigenvalue and \mathbf{u}_i is the corresponding eigenvector. If \mathbf{A} is positive semi-definite then $\mathbf{u}_i^T \mathbf{A} \mathbf{u}_i \geq 0$ since \mathbf{u}_i is a particular vector in \mathbb{R}^n . So we have $0 \leq \mathbf{u}_i^T \mathbf{A} \mathbf{u}_i = \lambda \|\mathbf{u}_i\|^2$ and hence $\lambda_i \geq 0$. Conversely, if $\lambda_i \geq 0$ for all i, then since $\mathbf{A} = \sum_{i=1}^n \lambda_i \mathbf{u}_i \mathbf{u}_i^T$ we can conclude that

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \left(\sum_{i=1}^n \lambda_i \mathbf{u}_i \mathbf{u}_i^T \right) \mathbf{x} = \sum_{i=1}^n \lambda_i (\mathbf{u}_i^T \mathbf{x})^2 \ge 0.$$

Corollary

If a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive definite (not semi-definite), then \mathbf{A} must be invertible, i.e., there exist $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}. \tag{14}$$

Matrix Calculus

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a scalar field. The gradient of f with respect to $\mathbf{x} \in \mathbb{R}^n$ is defined as

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}. \tag{15}$$

Example 1. $f(x) = a^T x$. In this case, the gradient is

$$\nabla_{\mathbf{x}} \left(\mathbf{a}^{\mathsf{T}} \mathbf{x} \right) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_1} \sum_{j=1}^n a_j x_j \\ \vdots \\ \frac{\partial}{\partial x_n} \sum_{j=1}^n a_j x_j \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \mathbf{a}. \tag{16}$$

More Examples

Example 2. $f(x) = x^T A x$. Then,

$$\nabla_{\mathbf{x}} \left(\mathbf{x}^{T} \mathbf{A} \mathbf{x} \right) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_{1}} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_{n}} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_{1}} \sum_{i,j=1}^{n} a_{ij} x_{i} x_{j} \\ \vdots \\ \frac{\partial}{\partial x_{n}} \sum_{i,j=1}^{n} a_{ij} x_{i} x_{j} \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{j=1}^{n} a_{1,j} x_{j} \\ \vdots \\ \sum_{i=1}^{n} a_{n,j} x_{i} \end{bmatrix} + \begin{bmatrix} \sum_{i=1}^{n} a_{i,1} x_{i} \\ \vdots \\ \sum_{i=1}^{n} a_{i,n} x_{i} \end{bmatrix} = \mathbf{A} \mathbf{x} + \mathbf{A}^{T} \mathbf{x}$$

If **A** is symmetric so that $\mathbf{A} = \mathbf{A}^T$ then $\nabla_{\mathbf{x}} f(\mathbf{x}) = 2\mathbf{A}\mathbf{x}$

More Examples

Example 3. $f(x) = ||Ax - y||^2$. The gradient is

$$\nabla_{\mathbf{x}} \left(\| \mathbf{A} \mathbf{x} - \mathbf{y} \|^{2} \right) = \nabla_{\mathbf{x}} \left(\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x} - 2 \mathbf{y}^{T} \mathbf{A} \mathbf{x} + \mathbf{y}^{T} \mathbf{y} \right)$$

$$= \nabla_{\mathbf{x}} \left(\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x} \right) - 2 \nabla_{\mathbf{x}} \left(\mathbf{y}^{T} \mathbf{A} \mathbf{x} \right) + \nabla_{\mathbf{x}} \left(\mathbf{y}^{T} \mathbf{y} \right)$$

$$= 2 \mathbf{A}^{T} \mathbf{A} \mathbf{x} - 2 \mathbf{A}^{T} \mathbf{y} + 0 = 2 \mathbf{A}^{T} (\mathbf{A} \mathbf{x} - \mathbf{y}).$$

Definition

The Hessian of f with respect to $\mathbf{x} \in \mathbb{R}^n$ is defined as

$$\nabla_{\mathbf{x}}^{2} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} \end{bmatrix}.$$
(17)