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Today's Agenda

Two Fundamental Questions about Adversarial Attack

@ Can We completely avoid adversarial attack?
o Is there any classifier that cannot be attacked?
o We will show that all classifiers are adversarial vulnerable

o If adversarial attack is unavoidable, what can we do?
e There is a natural trade-off between accuracy and robustness
e You can be absolutely robust but useless, or absolutely accurate but

very vulnerable

o We will characterize this trade-off

Our Plan: This lecture is based on two very recent papers
o Fawzi et al. Adversarial vulnerability for any classifier, arXiv:
1802.08686
@ Zhang et al. Theoretically principled trade-off between robustness and
accuracy, arXiv: 1901.08573
This lecture is theoretical. We will not go into the details. We will

highlight the main conclusions and interpret their results.
2/29



N
Outline

@ Lecture 33-35 Adversarial Attack Strategies
@ Lecture 36 Adversarial Defense Strategies

@ Lecture 37 Trade-off between Accuracy and Robustness

Today’s Lecture
@ Adversarial robustness of any classifier
o Can we completely avoid adversarial attack?

o Is there any classifier that cannot be attacked?
o We will show that all classifiers are adversarial vulnerable

@ Robustness-accuracy trade off

If adversarial attack is unavoidable, what can we do?

There is a natural trade-off between accuracy and robustness

e You can be absolutely robust but useless, or absolutely accurate but
very vulnerable

e We will characterize this trade-off
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Adversarial Robustness of Any Classifier

The first question we ask: Is adversarial attack unavoidable?
@ There are several papers discussing this issue.

@ We will be focusing on: Fawzi et al. Adversarial vulnerability for any
classifier, arXiv: 1802.08686

@ There is another paper: Shafahi et al. Are adversarial examples
inevitable, arXiv 1809.02104

@ The results we are going to study are both general and restrictive

@ They are general because the results are universal bounds for all
classifiers

@ They are restrictive because they assume a generative model, require
high dimensionality, and are ¢, ball additive attack

@ Our plan: Understand the major claims, and not to worry about the
specific proofing techniques (e.g., Gaussian isoperimetric inequality)
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Notation

There is an input x

Assume that x comes from a generator x = g(z) where z is i.i.d.
Gaussian.

Think about a generative adversarial network (GAN) ®. You give me
z, and then | generate the image x according to x = g(z).

r is perturbation

f is classifier

In-distribution robustness:

fn(x) = min gz + r) — x| subject to F(g(z +r)) £ F(x). (1)

LGAN is not the same as adversarial attack. GAN is a method that approximates the
distribution.
5/29



|
fin(X)
@ Let us take a closer look at rin(x):
fin(x) = min[lg(z +r) — g(2)|| subject to f(g(z +r)) # f(g(2)).

@ To make things clearer, let us replace all the x by g(z)
@ You can do that because you assume x is generated from g

o f(g(z+r)) # f(g(z)) says that the perturbed data is classified
differently from the original

e min,cz ||g(z + r) — x|| says that for those that causes
mis-classification, | will minimize the perturbation strength

@ The smallest perturbation that still causes misclassification is then
defined as the robustness of f

@ You want riy(x) as large as possible. The larger it is, the stronger
perturbation the hacker needs to launch in order to fool your classifier
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Unconstrained Robustness

(]

Can we generalize the result to arbitrary perturbations?

That is, we are not limited to generative models

To do so we need to define the unconstrained robustness

Func(x) = mi/g |lr|| subject to f(x+r)# f(x) (2)
re

You can show that
Func(x) < rin(x).

@ For certain classifiers, you can further have %r;n(x) < func(x). See
Fawzi Theorem 2.

So if you bound rin(x) < 7, you can also bound runc(x)
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Main Result

@ Here we are going to summarize the main result.

@ We will present the result in its simplest form, i.e., a very narrow
case, so that we can bypass the technical details.

@ Read the paper to learn more.

Theorem (Fawzi et al. 2018 Theorem 1)

Let f : RY — {1,...,K} be an arbitrary classification function. Then, for
any n,

Plrin(x) <n] >1-— \/Ze_;; (3)

where L is the Lipschitz constant of g.

v

Remark: Lipschitz constant defines the maximum slope of a function. See
https://en.wikipedia.org/wiki/Lipschitz_continuity
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-
Interpreting the Result

Let us look at this equation

2
Plm(x) <ol 21— 5o i (@
@ The event you are measuring is rin(x) < 7.

@ This says: You want the robustness to be no better than . This a
bad event.

@ The equation says: The probability could be big.

@ There exists a perturbation of magnitude 1 o L such that the
classifier can be fooled.

@ Normally, L < V/d, where d is the dimension of x (think of an
image).

e If you plug in n = 2L, then you can show that P[r,(x) < 2L] > 0.8.

@ For just 2L perturbation magnitude, you have 0.8 probability of
fooling the classifier.
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What Does Attack Scale with d?

Let us also quickly look at Shafahi et al. Are adversarial examples
inevitable, arXiv 1809.02104

@ The findings are quite similar to Fawsi's.

@ They showed that with probability at least

1-V, (g)iexp{—dglg}, (5)

then one of the followings will hold
e The data x is originally misclassified, or
e x can be attacked within an e-ball.

@ You can ignore the constant V.
@ As the data dimension d grows, the probability will go to 1
@ So for large images, the probability of attacking is high.
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So what do we learned?

Existence of Attack:
@ The results above are existence results.

o With high probability, there exists a direction which can almost
certainly fool the classifier.

@ This holds for all classifiers, as long as the dimension is high enough.

@ Think in this way: Each perturbation pixel is small, but the sum can
be big.

@ How to find this attack direction? Not the focus here.

Can Random Noise Attack?
@ Random noise cannot attack, especially for white-box.

@ The probability of getting the correct attack direction is close to zero.
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Outline

@ Lecture 33-35 Adversarial Attack Strategies
@ Lecture 36 Adversarial Defense Strategies

@ Lecture 37 Trade-off between Accuracy and Robustness

Today’s Lecture
@ Adversarial robustness of any classifier
e Can We completely avoid adversarial attack?

e Is there any classifier that cannot be attacked?
e We will show that all classifiers are adversarial vulnerable

@ Robustness-accuracy trade off

If adversarial attack is unavoidable, what can we do?

There is a natural trade-off between accuracy and robustness

e You can be absolutely robust but useless, or absolutely accurate but
very vulnerable

e We will characterize this trade-off
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Trade Off Analysis

o If adversarial attack is unavoidable, what can we do?
o We want to show that there is a natural trade-off between accuracy
and robustness
e You can be absolutely robust but useless, or absolutely accurate but
very vulnerable
@ Intuitively, the existence of trade-off makes sense:
e You can be very robust, e.g., always claims class 1 regardless what you
see. Then you are ultimately robust but not accurate.
e You can be very accurate, e.g., a perceptron algorithm for linearly
separable problems. But you have terrible robustness.
@ Our discussion is based on this paper
e Zhang et al. Theoretically principled trade-off between robustness and
accuracy, arXiv: 1901.08573
e Published in ICML 2019
@ There is another very interesting paper
e Tsipras et al., Robustness May Be at Odds with Accuracy, arXiv:
1805.12152

e Some observations are quite intriguing.
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Main Messages of Zhang et al. 2019

We will focus on Zhang et al. Theoretically principled trade-off between
robustness and accuracy, arXiv: 1901.08573.

There are three messages:

@ (1) There is an intrinsic trade off between robustness and accuracy

@ (2) It is possible to upper bound both terms using a technique called
classification-calibrated loss

@ (3) You can develop a heuristic algorithm to minimize the empirical
risk
In addition, the paper showed a few very interesting results

@ The trade-off optimization generalizes adversarial training
@ They outperform defense methods in NIPS 2018 challenges
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Notation
@ x € X: Input data. Random variable X. Realization x.
e ye)Y = {+1,—1}: Label. Random variable Y. Realization y.
o Classifier: f : X — Y
e B(x,€) = an e-ball surrounding the point x

o B(x,e) ={x" € X:|x —x| <¢}
Decision boundary of the classifier DB(f) = {x € X' : f(x) = 0}.
Neighborhood of the decision boundary B(DB(f),¢).
o B(DB(f),e) = {x € X : Ix’ € B(x, ¢)s.t.f(x)f(x") < 0}
e Basically: The band surrounding the decision boundary
e Pick a point x. If x is inside the band, then you can find x” with the
epsilon ball of x, where f(x) = +1 and f(x') = —1.
o If x is outside the band, then within the same epsilon ball you will not
be able to find a point that is predicted with an opposite label.
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Notation
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Accuracy and Robustness
Natural Classification Error

Rnat(f) = IE(X,Y)NDH{)‘-()()Y < 0} (6)

You pick an input X.

The prediction is (X).

You compare with the true label Y.

If mismatch, then f(X)Y < 0.

The indicator function I will tell you whether this is indeed a mistake.
Then you average over all the possible inputs X ~ D.

This will tell you the amount of error made by your classifier.

Of course, you want this natural error as small as possible.

1 — Rnat(f) is the natural accuracy. You want it as high as possible.
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Accuracy and Robustness

Boundary Classification Error

Rody(f) = Ex,vy~pl{X € B(DB(f),¢), f(X)Y > 0} (7)

e X € B(DB(f) means the point X is inside the band.
e f(X)Y > 0 means that X is correctly classified.
@ So, Rypdy(f) is anything inside the band and is correctly classified.

Ruat(f) Reay(f)
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Accuracy and Robustness
Robust Classification Error

Rrob(f) = Rnat(f) + Rbdy(f) (8)

@ This is the sum of the two error: Anything that you have already
made mistake (natural error), plus anything that you will likely to
make mistake (boundary error)

Rrob([f)
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Example

The input is x € [0, 1].
The true label y is either +1 or -1.

Partition the input space into segments. Each segment has length e.

Odd segments are -1. Even segments are +1.

Also define the posterior probability 7(x) def P[Y = +1|X = x]
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Example

Bayes Optimal Classifier | All-One Classifier
Roat 0 (optimal) 1/2
Rbdy 1 0
Rrob 1 1/2 (optimal)

Because you know the posterior distribution, Bayesian optimal
classifier (based on MAP) will be exactly the same as n(x). So

Rnat = 0 and it is optimal.

The boundary error is 1, because the band is just the entire internal

You can choose an all-one classifier. You always claim 1.

This is a bad classifier in terms of natural accuracy. Half is correct,

half is wrong.

But the robustness error is actually better than Bayesian optimal.
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Upper Bounding the Error

@ After defining how to measure robustness, we can now ask about the
fundamental limit of R, (f).
@ The approach proposed by the paper is to
o Define R},, = mins Rnat(f) be the best classifier (based on minimize
the natural error).
o We want to upper bound R,op(f) — R}, so that we know Rop(f) is
more than R}, by some maximum amount.
e If we can find such upper bound, then we can perhaps minimizing the
upper bound.

@ Let us first state the theorem, and discuss the equations.
@ We will skip the details. You should read the paper.

Theorem (Zhang et al. 2019 Theorem 3.1)

Rios(F) ~ Rpwe < 07" (Ry(f) = RY) +E_max o(F(X)(X)/A). (9)
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Basic Argument

The theorem states that

Reoo(F)~ R < U7 (Ry(F) = R3) +E_ max 6(F(X)F(X)/2). (10)

@ The basic argue goes as follows.

Riob(f) — R

nat
(a)

= Rnat(f) — Rpat + Rody(f) because Riob = Rnat + Rbdy

(2 P HRH(F) — R3) + Roay(f) using surrogate loss 1

D 4 L(Ry(F) — RL) + P[X € B(DB(F), €), F(X)Y > 0]

(2 PHR(F) = RE)+E_ max  ¢(F(X')F(X)/A),  for some A > 0.

X'€B(X ,c)

Let us talk about these steps one by one.
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Step (b)

Rrob(f) - R;at — Rnat(f) - Rﬁat + Rbd}’(f)
(b)
< P (Ry(F) — RY) + Reay(F)

@ In principle, Rnat(f) should be measured using

Riat(f) = E(x,v)~pI{f(X)Y < 0}.

The 0-1 loss is not differentiable, and poses difficulty in analysis.
One way to handle that is to replace the 0-1 loss by the so-called
classification-calibrated surrogate loss 2.

Surrogate loss comes with a pair of functions ¢ and .

Here are some examples

Loss o(a) U(0)
Hinge max{l — o, 0} [
Sigmoid 1 — tanh(a) 0
Exponential exp(—a) 1—v1-02
Logistic logy(1 4 exp(—a)) Viog (0)

2See Peter L Bartlett, Michael | Jordan, and Jon D McAuliffe. Convexity,
classification, and risk bounds. Journal of the American Statistical Association, 24 /29
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Step (b)

@ So if you choose the hinge loss, for example, then
() = max(1 — «,0) and ¢(0) =
° Substituting these into the equation, you will have
Rrob(f) - nat < R¢(f) - R; + Rbdy(f)
o If you can further upper bound (R4(f) — RZ) then you are good
o It turns out that (Ry(f) — R) can be bounded using Theorem 2

Theorem (Zhang et al. 2019 Theorem 3.2)

b (e “E max ¢(f(X'>f(x>/A>) < Ry(F) RS,

X'EB(X c)

< (9 —E max qS(f(X’)f(X)/)\)) +

X'eB(X e)
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Step (c) and (d)

Steps (c) and (d):
@ (c) is just the definition of the Rpyqy(f)
e (d) follows from this

P[X € B(DB(f),e¢), f(X)Y > 0]
< P[X € B(DB(f),¢)] former is a subset of latter
!/
=E  max H{AX) # (X))
=E max I{f(X")f(X)/\ <0} for all A
X'€B(X ¢)
<E max o(f(X)F(X)/N)
X'€B(X ¢)
@ You can think of X\ as a regularization parameter
@ Theorem 3.1 holds for all A
@ Theorem 3.2 says that in order for theorem to hold, you need to
carefully pick a A
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Optimization
@ The theorem above suggest an optimization to minimize
Rrob(f) - R;k\at:

min V(Ro() —RY) +E_ max o(F(X)F(X)/)

-~

accuracy

robustness

@ You can replace the first term by the empirical risk ¢(f(X)Y)

@ This will give you

mfin E{gb(f(X)Y) + X/m:?x qﬁ(f(X’)f(X)/)\)}

€B(X ,e)

accuracy
robustness

@ There is a regularization parameter A
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What do you gain?

Let us look at this optimization again:

min E{¢(f(X)Y)+ max X0/}

robustness
@ This optimization is a trade-off between accuracy and robustness

@ Recall adversarial training (Madry et al.)

mfin JE{ X’QB%((@) o(f(X )Y)}

@ It is an upper bound of Rop(f)
@ The upper bound offered by the trade-off formulation is tighter
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Summary

What do we learn from this lecture?
@ All classifiers are vulnerable

o Nature of the problem. As long as your perturbation is strong enough,
you can fool the classifier
o Especially true when the dimension of the data is high
@ There is a trade off between accuracy and robustness
e You need to trade the two through optimization
o More general than adv. training, but still along the same line
o Computational cost is as high as adversarial training
Some general advice for students
The worst research project today is to develop new attack / defense.
The trade-off is interesting but kind of expectable.
The more difficult question is to go beyond the /,-ball.
Much more valuable: Improve natural accuracy in different
environment, not customized attack.

If you want to defend attacks, defend new attacks that you have not
seen, at scale.
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