# ECE595 / STAT598: Machine Learning I Lecture 37 Robustness and Accuracy Trade Off

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering
Purdue University



## Today's Agenda

#### Two Fundamental Questions about Adversarial Attack

- Can We completely avoid adversarial attack?
  - Is there any classifier that cannot be attacked?
  - We will show that all classifiers are adversarial vulnerable
- If adversarial attack is unavoidable, what can we do?
  - There is a natural trade-off between accuracy and robustness
  - You can be absolutely robust but useless, or absolutely accurate but very vulnerable
  - We will characterize this trade-off

### Our Plan: This lecture is based on two very recent papers

- Fawzi et al. Adversarial vulnerability for any classifier, arXiv: 1802.08686
- Zhang et al. Theoretically principled trade-off between robustness and accuracy, arXiv: 1901.08573

This lecture is theoretical. We will not go into the details. We will highlight the main conclusions and interpret their results.

### Outline

- Lecture 33-35 Adversarial Attack Strategies
- Lecture 36 Adversarial Defense Strategies
- Lecture 37 Trade-off between Accuracy and Robustness

#### Today's Lecture

- Adversarial robustness of any classifier
  - Can we completely avoid adversarial attack?
  - Is there any classifier that cannot be attacked?
  - We will show that all classifiers are adversarial vulnerable
- Robustness-accuracy trade off
  - If adversarial attack is unavoidable, what can we do?
  - There is a natural trade-off between accuracy and robustness
  - You can be absolutely robust but useless, or absolutely accurate but very vulnerable
  - We will characterize this trade-off

# Adversarial Robustness of Any Classifier

The first question we ask: Is adversarial attack unavoidable?

- There are several papers discussing this issue.
- We will be focusing on: Fawzi et al. Adversarial vulnerability for any classifier, arXiv: 1802.08686
- There is another paper: Shafahi et al. Are adversarial examples inevitable, arXiv 1809.02104
- The results we are going to study are both general and restrictive
- They are general because the results are universal bounds for all classifiers
- ullet They are restrictive because they assume a generative model, require high dimensionality, and are  $\ell_p$  ball additive attack
- Our plan: Understand the major claims, and not to worry about the specific proofing techniques (e.g., Gaussian isoperimetric inequality)

#### Notation

- There is an input x
- Assume that x comes from a generator x = g(z) where z is i.i.d. Gaussian.
- Think about a generative adversarial network (GAN) <sup>1</sup>. You give me z, and then I generate the image x according to x = g(z).
- r is perturbation
- f is classifier
- In-distribution robustness:

$$r_{\text{in}}(\mathbf{x}) = \min_{\mathbf{r} \in \mathcal{Z}} \|g(\mathbf{z} + \mathbf{r}) - \mathbf{x}\|$$
 subject to  $f(g(\mathbf{z} + \mathbf{r})) \neq f(\mathbf{x})$ . (1)

<sup>&</sup>lt;sup>1</sup>GAN is not the same as adversarial attack. GAN is a method that approximates the distribution.

# $r_{\rm in}(x)$

• Let us take a closer look at  $r_{in}(x)$ :

$$r_{\text{in}}(\mathbf{x}) = \min_{\mathbf{r} \in \mathcal{Z}} \|g(\mathbf{z} + \mathbf{r}) - g(\mathbf{z})\|$$
 subject to  $f(g(\mathbf{z} + \mathbf{r})) \neq f(g(\mathbf{z}))$ .

- ullet To make things clearer, let us replace all the x by g(z)
- ullet You can do that because you **assume**  $oldsymbol{x}$  is generated from  $oldsymbol{g}$
- $f(g(z + r)) \neq f(g(z))$  says that the perturbed data is classified differently from the original
- $\min_{r \in \mathcal{Z}} \|g(z+r) x\|$  says that for those that causes mis-classification, I will minimize the perturbation strength
- The smallest perturbation that still causes misclassification is then defined as the robustness of f
- You want  $r_{in}(x)$  as **large** as possible. The larger it is, the stronger perturbation the hacker needs to launch in order to fool your classifier

### **Unconstrained Robustness**

- Can we generalize the result to arbitrary perturbations?
- That is, we are not limited to generative models
- To do so we need to define the unconstrained robustness

$$r_{\text{unc}}(\mathbf{x}) = \min_{\mathbf{r} \in \mathcal{X}} \|\mathbf{r}\|$$
 subject to  $f(\mathbf{x} + \mathbf{r}) \neq f(\mathbf{x})$  (2)

You can show that

$$r_{\mathsf{unc}}(\mathbf{x}) \leq r_{\mathsf{in}}(\mathbf{x}).$$

- For certain classifiers, you can further have  $\frac{1}{2}r_{in}(x) \leq r_{unc}(x)$ . See Fawzi Theorem 2.
- So if you bound  $r_{\rm in}(x) \leq \eta$ , you can also bound  $r_{\rm unc}(x)$

### Main Result

- Here we are going to summarize the main result.
- We will present the result in its simplest form, i.e., a very narrow case, so that we can bypass the technical details.
- Read the paper to learn more.

### Theorem (Fawzi et al. 2018 Theorem 1)

Let  $f: \mathbb{R}^d \to \{1, \dots, K\}$  be an arbitrary classification function. Then, for any  $\eta$ ,

$$\mathbb{P}[r_{in}(\mathbf{x}) \le \eta] \ge 1 - \sqrt{\frac{\pi}{2}} e^{-\frac{\eta^2}{2L^2}} \tag{3}$$

where L is the Lipschitz constant of g.

Remark: Lipschitz constant defines the maximum slope of a function. See https://en.wikipedia.org/wiki/Lipschitz\_continuity

## Interpreting the Result

Let us look at this equation

$$\mathbb{P}[r_{\mathsf{in}}(\mathbf{x}) \leq \eta] \geq 1 - \sqrt{\frac{\pi}{2}} e^{-\frac{\eta^2}{2L^2}} \tag{4}$$

- The event you are measuring is  $r_{in}(x) \leq \eta$ .
- ullet This says: You want the robustness to be no better than  $\eta.$  This a bad event.
- The equation says: The probability could be big.
- There exists a perturbation of magnitude  $\eta \propto L$  such that the classifier can be fooled.
- Normally,  $L \ll \sqrt{d}$ , where d is the dimension of  ${\it x}$  (think of an image).
- If you plug in  $\eta = 2L$ , then you can show that  $\mathbb{P}[r_{in}(\mathbf{x}) \leq 2L] \geq 0.8$ .
- For just 2*L* perturbation magnitude, you have 0.8 probability of fooling the classifier.

### What Does Attack Scale with *d*?

Let us also quickly look at Shafahi et al. Are adversarial examples inevitable, arXiv 1809.02104

- The findings are quite similar to Fawsi's.
- They showed that with probability at least

$$1 - V_c \left(\frac{\pi}{2}\right)^{\frac{1}{2}} \exp\left\{-\frac{d-1}{2}\epsilon^2\right\},\tag{5}$$

then one of the followings will hold

- The data x is originally misclassified, or
- x can be attacked within an  $\epsilon$ -ball.
- You can ignore the constant  $V_c$ .
- As the data dimension d grows, the probability will go to 1.
- So for large images, the probability of attacking is high.

#### So what do we learned?

#### Existence of Attack:

- The results above are **existence** results.
- With high probability, there exists a direction which can almost certainly fool the classifier.
- This holds for all classifiers, as long as the dimension is high enough.
- Think in this way: Each perturbation pixel is small, but the sum can be big.
- How to find this attack direction? Not the focus here.

#### Can Random Noise Attack?

- Random noise cannot attack, especially for white-box.
- The probability of getting the correct attack direction is close to zero.

### Outline

- Lecture 33-35 Adversarial Attack Strategies
- Lecture 36 Adversarial Defense Strategies
- Lecture 37 Trade-off between Accuracy and Robustness

#### Today's Lecture

- Adversarial robustness of any classifier
  - Can We completely avoid adversarial attack?
  - Is there any classifier that cannot be attacked?
  - We will show that all classifiers are adversarial vulnerable
- Robustness-accuracy trade off
  - If adversarial attack is unavoidable, what can we do?
  - There is a natural trade-off between accuracy and robustness
  - You can be absolutely robust but useless, or absolutely accurate but very vulnerable
  - We will characterize this trade-off

## Trade Off Analysis

- If adversarial attack is unavoidable, what can we do?
  - We want to show that there is a natural trade-off between accuracy and robustness
  - You can be absolutely robust but useless, or absolutely accurate but very vulnerable
- Intuitively, the existence of trade-off makes sense:
  - You can be very robust, e.g., always claims class 1 regardless what you see. Then you are ultimately robust but not accurate.
  - You can be very accurate, e.g., a perceptron algorithm for linearly separable problems. But you have terrible robustness.
- Our discussion is based on this paper
  - Zhang et al. Theoretically principled trade-off between robustness and accuracy, arXiv: 1901.08573
  - Published in ICML 2019
- There is another very interesting paper
  - Tsipras et al., Robustness May Be at Odds with Accuracy, arXiv: 1805.12152
  - Some observations are quite intriguing.

## Main Messages of Zhang et al. 2019

We will focus on Zhang et al. Theoretically principled trade-off between robustness and accuracy, arXiv: 1901.08573.

#### There are three messages:

- (1) There is an intrinsic trade off between robustness and accuracy
- (2) It is possible to upper bound both terms using a technique called classification-calibrated loss
- (3) You can develop a heuristic algorithm to minimize the empirical risk

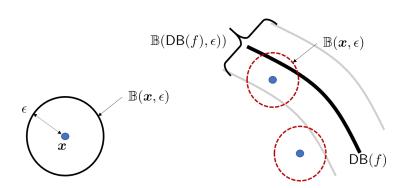
In addition, the paper showed a few very interesting results

- The trade-off optimization generalizes adversarial training
- They outperform defense methods in NIPS 2018 challenges

### Notation

- $x \in \mathcal{X}$ : Input data. Random variable X. Realization x.
- $y \in \mathcal{Y} = \{+1, -1\}$ : Label. Random variable Y. Realization y.
- Classifier:  $f: \mathcal{X} \to \mathcal{Y}$
- $\mathbb{B}(x,\epsilon) = \text{an } \epsilon\text{-ball}$  surrounding the point x
  - $\mathbb{B}(\mathbf{x}, \epsilon) = {\mathbf{x}' \in \mathcal{X} : ||\mathbf{x}' \mathbf{x}|| \le \epsilon}$
- **Decision boundary** of the classifier  $DB(f) = \{x \in \mathcal{X} : f(x) = 0\}.$
- Neighborhood of the decision boundary  $\mathbb{B}(\mathsf{DB}(f),\epsilon)$ .
  - $\mathbb{B}(\mathsf{DB}(f), \epsilon) = \{ \mathbf{x} \in \mathcal{X} : \exists \mathbf{x}' \in \mathbb{B}(\mathbf{x}, \epsilon) \text{s.t.} f(\mathbf{x}) f(\mathbf{x}') \leq 0 \}$
  - Basically: The band surrounding the decision boundary
  - Pick a point x. If x is inside the band, then you can find x' with the epsilon ball of x, where f(x) = +1 and f(x') = -1.
  - If x is outside the band, then within the same epsilon ball you will not be able to find a point that is predicted with an opposite label.

### **Notation**



## Accuracy and Robustness

#### **Natural Classification Error**

$$\mathcal{R}_{\mathsf{nat}}(f) = \mathbb{E}_{(\boldsymbol{X},Y) \sim \mathcal{D}} \mathbb{I}\{f(\boldsymbol{X})Y \leq 0\}. \tag{6}$$

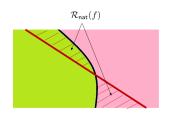
- You pick an input X.
- The prediction is f(X).
- You compare with the true label Y.
- If mismatch, then  $f(X)Y \leq 0$ .
- $\bullet$  The indicator function  $\mathbb I$  will tell you whether this is indeed a mistake.
- Then you average over all the possible inputs  $\boldsymbol{X} \sim D$ .
- This will tell you the amount of error made by your classifier.
- Of course, you want this natural error as small as possible.
- ullet  $1-\mathcal{R}_{\mathsf{nat}}(f)$  is the **natural accuracy**. You want it as high as possible.

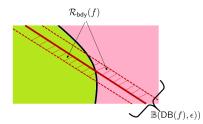
### Accuracy and Robustness

#### **Boundary Classification Error**

$$\mathcal{R}_{\mathsf{bdy}}(f) = \mathbb{E}_{(\boldsymbol{X},Y) \sim \mathcal{D}} \mathbb{I}\{\boldsymbol{X} \in \mathbb{B}(\mathsf{DB}(f),\epsilon), f(\boldsymbol{X})Y > 0\}$$
 (7)

- $X \in \mathbb{B}(\mathsf{DB}(f))$  means the point X is inside the band.
- f(X)Y > 0 means that X is correctly classified.
- So,  $\mathcal{R}_{\text{bdy}}(f)$  is anything inside the band **and** is correctly classified.



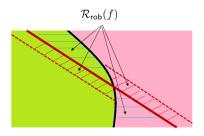


### Accuracy and Robustness

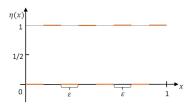
#### Robust Classification Error

$$\mathcal{R}_{\mathsf{rob}}(f) = \mathcal{R}_{\mathsf{nat}}(f) + \mathcal{R}_{\mathsf{bdy}}(f) \tag{8}$$

 This is the sum of the two error: Anything that you have already made mistake (natural error), plus anything that you will likely to make mistake (boundary error)



## Example



- The input is  $x \in [0, 1]$ .
- The true label y is either +1 or -1.
- ullet Partition the input space into segments. Each segment has length  $\epsilon.$
- Odd segments are -1. Even segments are +1.
- Also define the posterior probability  $\eta(x) \stackrel{\text{def}}{=} \mathbb{P}[Y = +1 | X = x]$

## Example

|                              | Bayes Optimal Classifier | All-One Classifier |
|------------------------------|--------------------------|--------------------|
| $\mathcal{R}_{\mathrm{nat}}$ | 0 (optimal)              | 1/2                |
| $\mathcal{R}_{	ext{bdy}}$    | 1                        | 0                  |
| $\mathcal{R}_{\mathrm{rob}}$ | 1                        | 1/2 (optimal)      |

- Because you know the posterior distribution, Bayesian optimal classifier (based on MAP) will be exactly the same as  $\eta(x)$ . So  $\mathcal{R}_{\text{nat}} = 0$  and it is optimal.
- The boundary error is 1, because the band is just the entire internal
- You can choose an all-one classifier. You always claim 1.
- This is a bad classifier in terms of natural accuracy. Half is correct, half is wrong.
- But the robustness error is actually better than Bayesian optimal.

## Upper Bounding the Error

- After defining how to measure robustness, we can now ask about the **fundamental limit** of  $\mathcal{R}_{\text{rob}}(f)$ .
- The approach proposed by the paper is to
  - Define  $\mathcal{R}_{nat}^* = \min_f \mathcal{R}_{nat}(f)$  be the best classifier (based on minimize the natural error).
  - We want to upper bound  $\mathcal{R}_{\text{rob}}(f) \mathcal{R}_{\text{nat}}^*$ , so that we know  $\mathcal{R}_{\text{rob}}(f)$  is more than  $\mathcal{R}_{\text{nat}}^*$  by some maximum amount.
  - If we can find such upper bound, then we can perhaps minimizing the upper bound.
- Let us first state the theorem, and discuss the equations.
- We will skip the details. You should read the paper.

### Theorem (Zhang et al. 2019 Theorem 3.1)

$$\mathcal{R}_{rob}(f) - \mathcal{R}_{nat}^* \leq \psi^{-1} \left( \mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^* \right) + \mathbb{E} \max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \phi(f(\boldsymbol{X}')f(\boldsymbol{X})/\lambda). \tag{9}$$

# Basic Argument

The theorem states that

$$\mathcal{R}_{\mathsf{rob}}(f) - \mathcal{R}_{\mathsf{nat}}^* \le \psi^{-1} \left( \mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^* \right) + \mathbb{E} \max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \phi(f(\boldsymbol{X}') f(\boldsymbol{X}) / \lambda). \tag{10}$$

The basic argue goes as follows.

$$\begin{split} &\mathcal{R}_{\mathsf{rob}}(f) - \mathcal{R}_{\mathsf{nat}}^* \\ &\stackrel{(a)}{=} \mathcal{R}_{\mathsf{nat}}(f) - \mathcal{R}_{\mathsf{nat}}^* + \mathcal{R}_{\mathsf{bdy}}(f) \qquad \mathsf{because} \ \ \mathcal{R}_{\mathsf{rob}} = \mathcal{R}_{\mathsf{nat}} + \mathcal{R}_{\mathsf{bdy}}(f) \\ &\stackrel{(b)}{\leq} \psi^{-1}(\mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^*) + \mathcal{R}_{\mathsf{bdy}}(f) \qquad \mathsf{using surrogate loss} \ \psi \\ &\stackrel{(c)}{=} \psi^{-1}(\mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^*) + \mathbb{P}[\boldsymbol{X} \in \mathbb{B}(\mathsf{DB}(f), \epsilon), f(\boldsymbol{X})\boldsymbol{Y} > 0] \end{split}$$

$$\overset{(d)}{\leq} \psi^{-1}(\mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^*) + \mathbb{E} \max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X},\epsilon)} \phi(f(\boldsymbol{X}')f(\boldsymbol{X})/\lambda), \qquad \text{for some } \lambda > 0.$$

Let us talk about these steps one by one.

# Step (b)

$$\mathcal{R}_{\mathsf{rob}}(f) - \mathcal{R}^*_{\mathsf{nat}} = \mathcal{R}_{\mathsf{nat}}(f) - \mathcal{R}^*_{\mathsf{nat}} + \mathcal{R}_{\mathsf{bdy}}(f)$$

$$\overset{(b)}{\leq} \psi^{-1}(\mathcal{R}_{\phi}(f) - \mathcal{R}^*_{\phi}) + \mathcal{R}_{\mathsf{bdy}}(f)$$

- In principle,  $\mathcal{R}_{\mathsf{nat}}(f)$  should be measured using  $\mathcal{R}_{\mathsf{nat}}(f) = \mathbb{E}_{(\boldsymbol{X},Y) \sim \mathcal{D}} \mathbb{I}\{f(\boldsymbol{X})Y \leq 0\}.$
- The 0-1 loss is not differentiable, and poses difficulty in analysis.
- One way to handle that is to replace the 0-1 loss by the so-called classification-calibrated surrogate loss<sup>2</sup>.
- Surrogate loss comes with a pair of functions  $\phi$  and  $\psi$ .
- Here are some examples

| Loss        | $\phi(\alpha)$              | $\psi(\theta)$            |
|-------------|-----------------------------|---------------------------|
| Hinge       | $\max\{1-\alpha,0\}$        | θ                         |
| Sigmoid     | $1 - \tanh(\alpha)$         | $\theta$                  |
| Exponential | $\exp(-\alpha)$             | $1 - \sqrt{1 - \theta^2}$ |
| Logistic    | $\log_2(1 + \exp(-\alpha))$ | $\psi_{\log}(\theta)$     |

<sup>&</sup>lt;sup>2</sup>See Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association,

# Step (b)

- So if you choose the hinge loss, for example, then  $\phi(\alpha) = \max(1 \alpha, 0)$  and  $\psi(\theta) = \theta$ .
- Substituting these into the equation, you will have  $\mathcal{R}_{\mathsf{rob}}(f) \mathcal{R}_{\mathsf{nat}}^* \leq \mathcal{R}_{\phi}(f) \mathcal{R}_{\phi}^* + \mathcal{R}_{\mathsf{bdy}}(f)$
- ullet If you can further upper bound  $(\mathcal{R}_\phi(f)-\mathcal{R}_\phi^*)$  then you are good
- It turns out that  $(\mathcal{R}_{\phi}(f) \mathcal{R}_{\phi}^*)$  can be bounded using Theorem 2

### Theorem (Zhang et al. 2019 Theorem 3.2)

$$\begin{split} \psi\left(\theta - \mathbb{E}\max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \phi(f(\boldsymbol{X}')f(\boldsymbol{X})/\lambda)\right) &\leq \mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^{*} \\ &\leq \psi\left(\theta - \mathbb{E}\max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \phi(f(\boldsymbol{X}')f(\boldsymbol{X})/\lambda)\right) + \xi. \end{split}$$

# Step (c) and (d)

### Steps (c) and (d):

- (c) is just the definition of the  $\mathcal{R}_{\text{bdv}}(f)$
- (d) follows from this

$$\begin{split} & \mathbb{P}[\boldsymbol{X} \in \mathbb{B}(\mathsf{DB}(f), \epsilon), f(\boldsymbol{X})\boldsymbol{Y} > 0] \\ & \leq \mathbb{P}[\boldsymbol{X} \in \mathbb{B}(\mathsf{DB}(f), \epsilon)] \qquad \text{former is a subset of latter} \\ & = \mathbb{E}\max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \mathbb{I}\{f(\boldsymbol{X}') \neq f(\boldsymbol{X})\} \\ & = \mathbb{E}\max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \mathbb{I}\{f(\boldsymbol{X}')f(\boldsymbol{X})/\lambda < 0\} \qquad \text{for all } \lambda \\ & \leq \mathbb{E}\max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \phi(f(\boldsymbol{X}')f(\boldsymbol{X})/\lambda) \end{split}$$

- You can think of  $\lambda$  as a regularization parameter
- ullet Theorem 3.1 holds for all  $\lambda$
- ullet Theorem 3.2 says that in order for theorem to hold, you need to carefully pick a  $\lambda$

## Optimization

• The theorem above suggest an optimization to minimize  $\mathcal{R}_{\mathsf{rob}}(f) - \mathcal{R}_{\mathsf{nat}}^*$ :

$$\min_{f} \ \underbrace{\psi^{-1}(\mathcal{R}_{\phi}(f) - \mathcal{R}_{\phi}^{*})}_{\text{accuracy}} + \underbrace{\mathbb{E}\max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \phi(f(\boldsymbol{X}')f(\boldsymbol{X})/\lambda)}_{\text{robustness}}$$

- You can replace the first term by the empirical risk  $\phi(f(X)Y)$
- This will give you

$$\min_{f} \mathbb{E}\left\{\underbrace{\phi(f(\boldsymbol{X})Y)}_{\text{accuracy}} + \underbrace{\mathbf{x}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)}_{\text{robustness}} \phi(f(\boldsymbol{X}')f(\boldsymbol{X})/\lambda)\right\}$$

ullet There is a regularization parameter  $\lambda$ 

## What do you gain?

Let us look at this optimization again:

$$\min_{f} \mathbb{E}\left\{\underbrace{\phi(f(\boldsymbol{X})Y)}_{\text{accuracy}} + \underbrace{\max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \phi(f(\boldsymbol{X}')f(\boldsymbol{X})/\lambda)}_{\text{robustness}}\right\}$$

- This optimization is a trade-off between accuracy and robustness
- Recall adversarial training (Madry et al.)

$$\min_{f} \mathbb{E} \left\{ \max_{\boldsymbol{X}' \in \mathbb{B}(\boldsymbol{X}, \epsilon)} \phi(f(\boldsymbol{X}')Y) \right\}$$

- It is an upper bound of  $\mathcal{R}_{\mathsf{rob}}(f)$
- The upper bound offered by the trade-off formulation is tighter

### Summary

#### What do we learn from this lecture?

- All classifiers are vulnerable
  - Nature of the problem. As long as your perturbation is strong enough, you can fool the classifier
  - Especially true when the dimension of the data is high
- There is a trade off between accuracy and robustness
  - You need to trade the two through optimization
  - More general than adv. training, but still along the same line
  - Computational cost is as high as adversarial training

#### Some general advice for students

- The worst research project today is to develop new attack / defense.
- The trade-off is interesting but kind of expectable.
- The more difficult question is to go beyond the  $\ell_p$ -ball.
- Much more valuable: Improve natural accuracy in different environment, not customized attack.
- If you want to defend attacks, defend new attacks that you have not seen, at scale.