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-
Today's Agenda

We have seen enough attack strategies

@ Today we want to look at defense strategies

We will study three classes of defenses:
o Pre-processing
e Randomness
e Adversarial training

@ Most of these defenses are developed for deep neural networks.

@ The principles are not difficult, although the implementation might be

challenging.

We choose to talk about deep defenses because we want you to
connect to the real world.

@ Linear models for insight, deep models for practice.

We will also study the holes of these defense, using the concept of
obfuscated gradient.

Finally we will offer our bias opinion.

2/32



N
Outline

@ Lecture 33-35 Adversarial Attack Strategies
@ Lecture 36 Adversarial Defense Strategies

@ Lecture 37 Trade-off between Accuracy and Robustness

Today’s Lecture

@ Three classes of defenses
o Pre-processing
o Adversarial training
e Randomness

@ Limitation of current defense (and also attacks)
o Obfuscated gradient
e Physical attack?
e Real attacks in social media today
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Three Defenses

@ Pre-processing
@ Randomness

o Adversarial training
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Pre-Processing

Main idea:
@ Given a perturbed data x
@ Let us do some data pre-processing g(x)
@ So that if you directly classify x using f(x) you fail
e But if you classify f(g(x)) you will succeed

There are many of such examples
@ Denoising: x is perturbed, so | denoise x

@ Geometry: Project the perturbed data back to the image manifold
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Pre-Processing

perturbed data

denoising

clean data

Decision boundary

Manifold of image

6/32



Example 1: Input Transform

Guo et al. (2018) Countering Adversarial Images using Input
Transformations
https://arxiv.org/abs/1711.00117

Published in ICLR 2018
Idea: Process the input (attack) data x

One approach they propose:
minimize [|(1 —X) ® (z — x)||2 + ATV(z)
z

e TV(z) is the total variation norm of a vector

e X is an array of Bernoulli random variables (either 0 or 1)
@ ( is element-wise multiplication
°

In their paper they have also introduced other types of input
transforms, e.g., JPEG compression.
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Total Variation

They call this the total variance minimization

Another classical example of computer scientists. Should be total
variation.

Total variation has been around for 3 decades.

You can trace the idea back to Rudin and Osher in 1992.

Over the past decade there are numerous total variation solvers.

For example, my lab has one method based on augmented Lagrangian
(2011) https://ieeexplore.ieee.org/document/5779734

Qriginal Moisy image Denoised image

Figure is taken from Wikipedia
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Training the Model

How to defend?
@ The following diagram is taken from Guo et al.’s paper

@ You need to “educate” the classifier about the input transform

—_— _
- e 2 7

Training: @ % model

Section 5.2 (Figure 4) B [ ;

Section 5.5 (Figure 6) ] L—

Figure 3: Block diagram detailing the differences between the experimental setups in Section
and[5.4] We train networks (a) on regular images or (b) on transformed images: we test the
networks on transformed adversarial images. For each of the three setups, dashed arrows indicate
which model is used by the adversary and which model is used by the classification model.
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Example 2: High-level Representation Guide Denoiser

Liao et al. (2017) Defense against Adversarial Attacks Using High-Level
Representation Guided Denoiser, https://arxiv.org/abs/1712.02976

o NIPS 2017 challenge winner

@ ldea: Train an image denoiser

@ Why not just use an off-the-shelf denoiser?

@ Start with a vanilla classifier (network in their setting)

@ Send a pair of clean and noisy images through the same network

@ Pull the respective features. They should look different.

@ Use the residue as a loss, and train a denoiser.
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Guided Denoiser

Here is their schematic diagram

“Panda” “Dog”
(Correct) (Wrong)

Logits [I | | | —»anss — | | ||
l =T
J—Ge—nﬁr,j

Figure 1: The idea of high-level representation guided de-
noiser. The difference between the original image and ad-

versarial image is tiny, but the difference is amplified in
high-level representation (logits for example) of a CNN. We
E use the distance over high-level representations to guide the
training of an image denoiser to suppress the influence of
Original Image Adversarial Image  adversarial perturbation.
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Feature Regularization

@ Conventionally, when training a denoiser the loss function is between
the prediction f(y) and the ground truth x

L(f(y), x") = [If (y) = x*[|?

@ Their approach is to define the loss as

L(f(y), x*) = [6(f(y)) — o(x")|?

where ¢ is the feature extracted by the classifier.

@ They call it high-level representation guided denoiser.

@ In my opinion, this is nothing but Geoffrey Hinton's knowledge
distillation (2015) https://arxiv.org/abs/1503.02531

@ There is another very interesting paper by Zhang et al. (2018)
https://arxiv.org/abs/1801.03924 which uses deep features for
image comparisons
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Three Defenses

@ Pre-processing
@ Randomness

o Adversarial training
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Randomness

Main ldea:

@ When the perturbed data comes, let me add randomness to the
problem

e E.g., use a suite of classifiers, and you don't know which one | am
using

o E.g., randomly flip a few pixels, or mask out some pixels then solve a
matrix completion problem

@ E.g., randomly move around the pixels so that the attack is distorted

@ Since attack is so specific along one direction, a small random
perturbation is enough to change its path

@ In high dimensional space, slight change in direction will cause
significant change in destination

@ As long as you do not know the exact state of me, you won't be able

to attack me
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Example 1: Randomize Input Data

Xie et al. (2018) Mitigating Adversarial Effects Through Randomization,
https://arxiv.org/abs/1711.01991

@ Published in ICLR 2018

@ Randomly resize and pad the image to create uncertainty

Input Image  Resized Image Padded Image
1 ”

n n X

& ______ = B

JE— CNN
5— Clsitenton
—————— \\_____________f -
Random Random Randomly
Resizing Padding Select One
Layer Layer Pattern
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Example 2: Pixel Deflection

Prakash et al. (2018), Deflecting Adversarial Attacks with Pixel
Deflection, https://arxiv.org/abs/1801.08926

@ Published in CVPR 2018

@ Random pick a pixel. Create a neighborhood. Replace the pixel by
one of pixels in the neighborhood.

Algorithm 1: Pixel deflection transform
Input :Image I, neighborhood size r
Output: Image I’ of the same dimensions as I

1 fori < 0to KX do

2 Letp; ~U(I)

3 Letn; ~U(R,NT)

4 I'[pi] = 1n]

5 end
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-
Example 3: Ensemble Method

Taran et al. (2019), Defending against adversarial attacks by randomized
diversification, https://arxiv.org/abs/1904.00689

e 6 6 o

Published in CVPR 2019

Idea: Create a suite of K classifiers

Each classifier has a key.

Pull the features (e.g., last layer before softmax)

The there is an aggregator which knows the key. Key is used to
combine the features

@ Attacker does not know the key

In my opinion, this method is okay for black-box attack. If it is a
straight white-box attack (i.e., attacker knows the key), it is unclear
whether the method will work.

If I am the attacker, if | know the distribution of the key, | can just
attack the average case. | won't be as successful, but | can still
attack you. You are paying the price of a much bigger model.
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|
Example 3: Ensemble Method

Example: Using discrete cosine transform

~

(a) sub-bands  (b) original

©V (dH (e)D (f) V+H+D

i Classifiersy '
Figure 6: Local randomization in the DCT sub-bands by
u

key-based sign flipping. ks Vo B

Figure 7: Classification with local DCT sign permutations.
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Three Defenses

@ Pre-processing
@ Randomness

@ Adversarial training
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Adversarial Training

Madry et al. (2018), Towards Deep Learning Models Resistant to
Adversarial Attacks, https://arxiv.org/pdf/1706.06083.pdf
@ Published in ICLR 2018

@ Idea: Solve a minimax problem
minimize E(x,y)~D max L(6,x+6,y) (1)

@ ) € S is the attack added to the input data x. y is the truth.
@ &S defines the set of allowable attacks. E.g., /o ball.

@ You take the maximum of the loss L(6, x 4 d,y) by searching for the
most nasty attack 4.

@ Then take expectation over the training set D to compute the
(empirical) risk.
@ Finally minimize the risk.
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-
Explanation by Madry et al.

Figure 3: A conceptual illustration of standard vs. adversarial decision boundaries. Left: A set of
points that can be easily separated with a simple (in this case, linear) decision boundary. Middle:
The simple decision boundary does not separate the £..-balls (here, squares) around the data points.
Hence there are adversarial examples (the red stars) that will be misclassified. Right: Separating
the £-balls requires a significantly more complicated decision boundary. The resulting classifier is
robust to adversarial examples with bounded £..-norm perturbations.
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Some Practical Consideration

@ Adversarial training says: Minimize the worst case scenario
@ To do so, you need to simulate these worst case scenarios. That is,
compute this:

IE(x,y)ND rpeaé)'( L(Q, X +9, y)

@ This requires drawing a lot of § from S so that you can compute the
average

@ For example, given a dog image you need perturb the image many
times in order to compute the average of this worst case scenario

o If the original training dataset is large, e.g., ImageNet (1.28M
images), a 10-fold adversarial training (i.e., for each image | generate
10 adversarial examples) will cause 10 times more training data

@ That's why Madry et al. only show results on MNIST and CIFAR10.
@ Scalability is very challenging.
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Variations

Wang et al. (2019), Detecting Photoshopped Faces by Scripting
Photoshop, https://arxiv.org/pdf/1906.05856.pdf

@ Detect subtle / un-noticeable changes

o Idea: Adversarial train a classifier by synthetically creating
perturbations in Photoshop.

(a) Manipulated photo (b) Detected manipulations (c) Suggested “undo” (d) Original photo

Figure 1: Given an input face (a), our tool can detect that the face has been warped with the Face-Aware Liquify tool from Photoshop,
predict where the face has been warped (b). and attempt to “undo™ the warp (¢) and recover the original image (d).
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Some Additional “Benefits” of Adversarial Training

Here are some finding by Tsipras et al. Robustness may be at odds with
accuracy, arXiv: 1805.12152

o Loss gradients in the input space align well with human
perception.

@ You train using standard protocol, compared to adversarial training.

@ Look at the gradient of the loss with respect to the input.
@ Adversarial trained is more “meaningful”.

(a) MNIST (b) CIFAR-10 (c) Restricted ImageNet
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Some Additional “Benefits” of Adversarial Training

@ Adversarial examples exhibit salient data characteristics.
@ You look at the adversarial examples.

o E.g., if you want to attack “9" to “7", the adversarial example
actually looks like “7".

@ This is observed in adversarial trained models, but not in standard
models

(©) Restricted ImageNet
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Outline

@ Lecture 33-35 Adversarial Attack Strategies
@ Lecture 36 Adversarial Defense Strategies

@ Lecture 37 Trade-off between Accuracy and Robustness

Today’s Lecture

@ Three classes of defenses
e Pre-processing
e Adversarial training
e Randomness

e Limitation of current defense (and also attacks)
o Obfuscated gradient
e Physical attack?
e Real attacks in social media today
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This is an endless game

The following picture is taken from DARPA’s GARD program.

Adversarial attacks cause a Many defenses have been tried and
catastrophic reduction in ML capability failed to generalize to new attacks
Attack Defense
Top ImageNet
100 finishers Approximation attacks
90 (Athalye et al, 2018) GANs
(Samangouei et al., 2018)
. = Detection
= (Maetal, 2018)
= 0 Optimization attacks
a 50 (Carlini, 2017)
L
o 4 Distillation
o
<

(Papemot et al , 2016)
Multi-stage attacks

\VAVAY/

10 Adversarial attacks (Kurakin, 2016)
0 L * ® Adversarial training
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 (Goodfellow et al., 2015)
Challenge Year Single Step attacks
(Goodfallow, 2014)
ImageNet Classification Attack / Defense Cycle
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Obfuscated gradient

Athalye et al. Obfuscated Gradients Give a False Sense of Security,
https://arxiv.org/abs/1802.00420

Best paper, ICML 2018
Claimed successful attack of 7 out of 9 white-box defense in ICLR
2018

@ The only that survives is adversarial training
@ Idea: A lot of defenses are based on gradient masking or

obfuscated gradient
That is, “hide away the gradient” or “destroy the gradient” so that
gradient based attackers will fail
This paper specifically listed three types of obfuscated gradients
e Shattered gradients: nonexistent or incorrect gradients created by the
defense
e Stochastic gradients: due to randomization schemes
e Vanishing gradients: due to propagation through deep networks

To attack, one just need to find a way to approximate the gradient
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[llustration

Attacking Input Transform:
@ The secured classifier is f(x) = f(g(x)). g is the input transform
@ Because g is a "denoiser”, we roughly want g(x) ~ x (Attacks
usually won't perturb the image too much, and so the effect of the
denoiser should be mild.)
@ Therefore, V,g(x) =~ 1
@ And so we can approximate the gradient of fatx=x by
Vief (X)|x=x2 = VF(X)|x=g(z)-
Attacking Randomization:
@ You have a distribution of the transformations t ~ T
@ While you do not know the specific case during defense, you can
attack the average
e That is, you can attack E;77(t(x))
@ You can approximate the gradient as VE;7f(t(x)) = E;.7Vf(t(x))
o Differentiate through f and t, and approximate the expectation with

samples at each gradient descent step
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Physical Attacks

Can adversarial attacks really attack systems in real physical space?
Probably, but your attack has to be strong. But if it is strong, then a
low-level image processing algorithm can detect

And remember, you never know the model parameters.

The real challenge is the physical environment

E.g., shadow, perspective change, angle, blur, noise, etc

| have never seen any physical attack that works beyond in the
reported scenarios

E.g., the stop sign example will not work if you attack on a rainy day
(because your attack is trained on a sunny day)

In my opinion, it is much more meaningful to solve the transfer
learning problem than trying to attack / defend

On this earth, the only parties that really care about attack are social
media platforms and search engines

What is the economic value of painting a stop sign in order to fool an

auto-car?
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Most attacks are not adversarial attack

@ Adversarial attacks are not common, at least on social media today.

@ People are not as smart as you. They probably do not even know
what FGSM is.

@ The way they attack is: Trial-and-error, repeat until it goes through
the screening system.

o E.g., add strips to a policy-violating image, blur the background, add
patches, etc.

@ Very creative, because there is economic value once the image shows
up as an advertisement.

o Large in volume, huge in variety, new every day.

@ You are welcome to do adversarial training or whatever you have seen
in the literature. But | promise nothing will work. (Really? These
are simple attacks. Yes, but they are rich!)

@ Social media have a large team of human content reviewers to catch
policy violating images.

@ Open problem. Our lab is working on it.
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Take Home

@ The obfuscated gradient paper by Athalye et al. concluded that only
adversarial training can withstand their attack
@ All methods reported then have been defeated
@ So if you want to propose something new, you need to withstand
their attack
@ Adversarial attack and defense is still very hot, as of today
@ There are also work saying that by pruning network parameters you
can gain robustness, and stuff along this line. (That's just a form of
regularization.)
@ My personal view: Adversarial attack is largely an academic toy.
@ The more meaningful tasks (under the same umbrella of adversarial
attack) are
e transfer learning
e very low-light classification
e recognition through random medium

@ Our lab has been doing work in the latter two problems. We can chat
if you are interested. 52 /30



