ECE595 / STAT598: Machine Learning I Lecture 33 Adversarial Attack: An Overview

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Today's Agenda

- We have studied
 - Part 1: Basic learning pipeline
 - Part 2: Algorithms
 - Part 3: Learning theory
- Now, we want to study the robustness of learning algorithms
- Robustness = easiness to fail when input is perturbed. Perturbation can be in any kind.
- Robust machine learning is a very rich topic.
- In the past, we have robust SVM, robust kernel regression, robust PCA, etc.
- More recently, we have transfer learning etc.
- In this course, we will look at something very narrow, called adversarial robustness.
- That is, robustness against attacks.
- Adversarial attack is a very hot topic, as of today.
- We should not over-emphasize its importance. There are many other important problems.

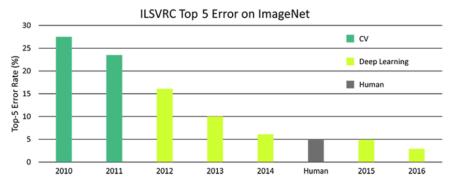
Outline

- Lecture 33 Overview
- Lecture 34 Min-distance attack
- Lecture 35 Max-loss attack and regularized attack

Today's Lecture

- What are adversarial attacks?
 - The surprising findings by Szegedy (2013) and Goodfellow (2014)
 - Examples of attacks
 - Physical attacks
- Basic terminologies
 - Defining attack
 - Multi-class problem
 - Three forms of attack
 - Objective function and constraint sets

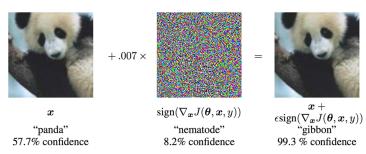
A Report in 2017



source: https://www.dsiac.org/resources/journals/dsiac/winter-2017-volume-4-number-1/real-time-situ-intelligent-video-analytics

Adversarial Attack Example: FGSM

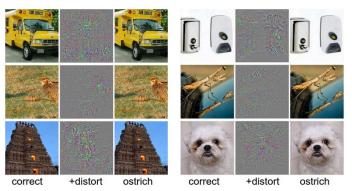
- It is not difficult to fool a classifier
- The perturbation could be perceptually not noticeable



Goodfellow et al. "Explaining and Harnessing Adversarial Examples", https://arxiv.org/pdf/1412.6572.pdf

Adversarial Attack Example: Szegedy's 2013 Paper

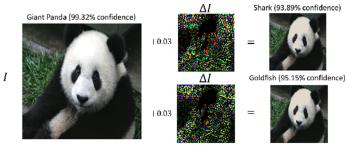
This paper actually appears one year before Goodfellow's 2014 paper.



Szegedy et al. Intriguing properties of neural networks https://arxiv.org/abs/1312.6199

Adversarial Attack: Targeted Attack

Targeted Attack



Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics, https://arxiv.org/abs/1612.07767

Adversarial Attack Example: One Pixel

One-pixel Attack

SHIP CAR(99.7%)

HORSE DOG(70.7%)

HORSE FROG(99.9%)

CAT(75.5%)

DEER
AIRPLANE(85.3%)

FROG(86.5%)

DEER DOG(86.4%)

BIRD FROG(88.8%)

One pixel attack for fooling deep neural networks https://arxiv.org/abs/1710.08864

Adversarial Attack Example: Patch

Adding a patch

African-Elephant (92.8%) \rightarrow Baseball (90.7%)

Brown Bear (87.9%) \rightarrow Tree Frog (82.7%)

Sports Car (92.8%) \rightarrow Shih-Tzu (90.7%)

Minivan (90.7%) \rightarrow Tree Frog (86.4%)

LaVAN: Localized and Visible Adversarial Noise, https://arxiv.org/abs/1801.02608

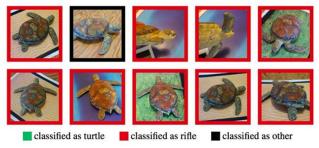
Adversarial Attack Example: Stop Sign

• The Michigan / Berkeley Stop Sign

Robust Physical-World Attacks on Deep Learning Models https://arxiv.org/abs/1707.08945

Adversarial Attack Example: Turtle

The MIT 3D Turtle

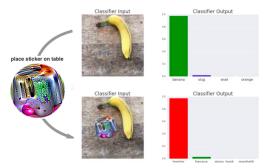


Synthesizing Robust Adversarial Examples https://arxiv.org/pdf/1707.07397.pdf

https://www.youtube.com/watch?v=YXy6oX1iNoA

Adversarial Attack Example: Toaster

Google Toaster



Adversarial Patch https://arxiv.org/abs/1712.09665 https://www.youtube.com/watch?v=i1sp4X57TL4

Adversarial Attack Example: Glass

CMU Glass

Recognized Person

Sharif, M., Bhagavatlula, S., Bauer, L., & Reiter, M. K. (2016, October).
Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp. 1528-1540). ACM.

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition https://www.cs.cmu.edu/~sbhagava/papers/face-rec-ccs16.pdf https://www.archive.ece.cmu.edu/~lbauer/proj/advml.php

Adversarial Attack: A Survey in 2017

Table III: Summary of Applications for Adversarial Examples

Applications	Representative	Method	Adversarial	Adversary's	Adversarial	Perturbation	Perturbation	Attack	Perturbation	Dataset	Architecture
	Study		Falsification	Knowledge	Specificity	Scope	Limitation	Frequency	Measurement		
Reinforcement	[93]	FGSM	N/A	White-box &	Non-	Individual	N/A	One-time	$\ell_1, \ell_2, \ell_{\infty}$	Atari	DQN,
Learning				Black-box	Targeted						TRPO, A3C
	[94]	FGSM	N/A	White-box	Non-	Individual	N/A	One-time	N/A	Atari Pong	A3C
					Targeted						
Generative	[95]	Feature	N/A	White-box	Targeted	Individual	Optimized	Iterative	<i>l</i> ₂	MNIST,	VAE,
Modeling		Adversary,								SVHN,	VAE-GAN
		C&W								CelebA	
	[96]	Feature	N/A	White-box	Targeted	Individual	Optimized	Iterative	ℓ_2	MNIST,	VAE, AE
		Adversary								SVHN	
Face Recog-	[67]	Impersonation	False	white-box &	Targeted &	Universal	Optimized	Iterative	Total	LFW,	VGGFace
nition Object		& Dodeine	negative	black-box	Non-				Variation		
		Attack			Targeted						
	[22]	DAG	False	White-box &	Non-	Individual	N/A	Iterative	N/A	VOC2007.	Faster-
Detection			negative &	Black-box	Tareeted					VOC2012	RCNN
			False								
			positive								
Semantic	[22]	DAG	False	White-box &	Non-	Individual	N/A	Iterative	N/A	DeepLab	FCN
Segmentation	()		negative &	Black-box	Targeted					and passes	
			False								
			positive								
	[97]	ILLC	False	White-box	Targeted	Individual	N/A	Iterative	l _∞	Cityscapes	FCN
			negative								
	[98]	ILLC	False	White-box	Targeted	Universal	N/A	Iterative	N/A	Cityscapes	FCN
	[5-6]		negative		, angeree					- Conjuntação	
Readine	[99]	AddSent,	N/A	Black-box	Non-	Individual	N/A	One-time &	N/A	SQuAD	BiDAE.
Comprehension	1004	AddAny		Diagn con	Targeted			Iterative		0 (0.10	Match-
											LSTM, and
											twelve other
											published
											models
	11001	Reinforcement	False	White-box	Non-	Individual	Optimized	Iterative	£0	InnAdvisor	Bi-LSIM.
	[100]	Learning	negative		Targeted		Opaning			Dataset	memory
		- Curring	in gains		Imgeled					Dining	network
	[101]	JSMA	False	White-box	Targeted	Individual	Optimized	Iterative	ℓ_2	DREBIN	2-layer FC
	[ioi]	Julius.	negative	William - Color	Imgeleu	IIIOI TIOGUI	Opuning	incremit c	1.2	Dittablet	2-myer re
Malware	[102]	Reinforcement	False	Black-box	Targeted	Individual	N/A	Iterative	N/A	N/A	Gradient
Detection	[102]	Learning	negative	Disca-ton	Imgeleu	IIIOI TIOGGI	167	neranive	100	100	Boosted
		- Lanning	in game								Decision
											Tree
	11031	GAN	False	Black-box	Targeted	Individual	N/A	Iterative	N/A	malwr	Multi-layer
	[100]	- CALIN	negative	LANGE A-DOLL	- geleu	- Francisco	1	accounted.	1	wi	Perceptron
	11041	GAN	False	Black-box	Targeted	Individual	N/A	Iterative	N/A	Alexa Top	Random
	[104]	Corkin.	negative	LineA-DOX	i mgeleu	III TIUUII	1	alive	1374	1M	Forest
	[105]	Generic Pro-	False	Black-box	Targeted	Individual	N/A	Iterative	N/A	Contagio	Random
	[100]	erammine	neestive	Diack-box	rangeled	monrioual	IN/A	merative	I IN/A	Contagio	Forest, SVM

Adversarial Examples: Attacks and Defenses for Deep Learning https://arxiv.org/abs/1712.07107

Outline

- Lecture 33 Overview
- Lecture 34 Min-distance attack
- Lecture 35 Max-loss attack and regularized attack

Today's Lecture

- What are adversarial attacks?
 - The surprising findings by Szegedy (2013) and Goodfellow (2014)
 - Examples of attacks
 - Physical attacks
- Basic terminologies
 - Defining attack
 - Multi-class problem
 - Three forms of attack
 - Objective function and constraint sets

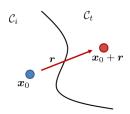
Definition: Additive Adversarial Attack

Definition (Additive Adversarial Attack)

Let $x_0 \in \mathbb{R}^d$ be a data point belong to class C_i . Define a target class C_t . An **additive** adversarial attack is an addition of a perturbation $\mathbf{r} \in \mathbb{R}^d$ such that the perturbed data

$$x = x_0 + r$$

is misclassified as C_t .



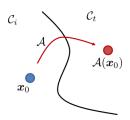
Definition: General Adversarial Attack

Definition (Adversarial Attack)

Let $x_0 \in \mathbb{R}^d$ be a data point belong to class C_i . Define a target class C_t . An **adversarial attack** is a mapping $\mathcal{A} : \mathbb{R}^d \to \mathbb{R}^d$ such that the perturbed data

$$\mathbf{x} = \mathcal{A}(\mathbf{x}_0)$$

is misclassified as C_t .



Example: Geometric Attack

Fast Geometrically-Perturbed Adversarial Faces (WACV 2019)

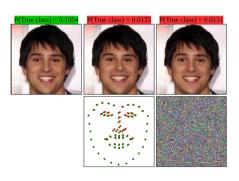
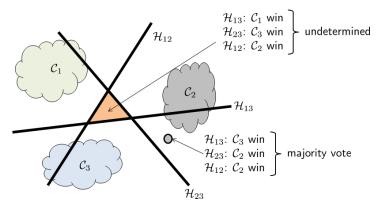


Figure 1. Comparison of the proposed attack to an intensity-based attack. First column: the ground truth image, which is correctly classified. Second column: the spatially transformed adversarial image wrongly classified and the corresponding adversarial landmark locations computed by our method. Third column: the adversarial image wrongly classified and the corresponding perturbation generated by the fast gradient sign method [7]. The proposed method leads to natural adversarial faces which are clean from additive noise

https://arxiv.org/pdf/1809.08999.pdf

The Multi-Class Problem

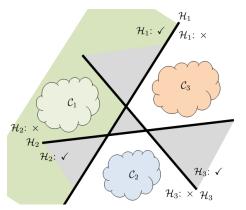
Approach 1: One-on-One



- Class i VS Class j
- Give me a point, check which class has more votes
- There is an undetermined region

The Multi-Class Problem

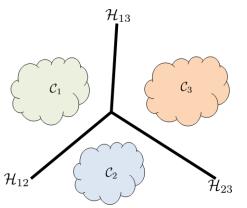
Approach 2: One-on-All



- Class i VS not Class i
- Give me a point, check which class has no conflict
- There are undetermined regions

The Multi-Class Problem

Approach 3: Linear Machine



- Every point in the space gets assigned a class.
- You give me x, I compute $g_1(x), g_2(x), \ldots, g_K(x)$.
- ullet If $g_i({m x}) \geq g_j({m x})$ for all j
 eq i, then ${m x}$ belongs to class i_{\odot Stanley Chan 2020. Al

Correct Classification

- We are mostly interested the linear machine problem.
- Let us try to simplify the notation. The statement:

If $g_i(x) \ge g_j(x)$ for all $j \ne i$, then x belongs to class i. is equivalent to (asking everyone to be less than 0)

$$g_1(\mathbf{x}) - g_i(\mathbf{x}) \leq 0$$

$$\vdots$$

$$g_k(\mathbf{x}) - g_i(\mathbf{x}) \leq 0,$$

and is also equivalent to (asking the worst guy to be less than 0)

$$\max_{j\neq i}\{g_j(x)\}-g_i(x)\leq 0$$

 Therefore, if I want to launch an adversarial attack, I want to move you to class t:

$$\max_{j\neq t} \{g_j(\boldsymbol{x})\} - g_t(\boldsymbol{x}) \leq 0.$$

Our Approach

Here is what we are going to do

- First, we will preview the three **equivalent** forms of attack:
 - Minimum Distance Attack: Minimize the perturbation magnitude while accomplishing the attack objective
 - Maximum Loss Attack: Maximize the training loss while ensuring perturbation is controlled
 - Regularization-based Attack: Use regularization to control the amount of perturbation
- Then, we will try to understand the **geometry** of the attacks.
- We will look at the linear classifier case to gain insights.

Minimum Distance Attack

Definition (Minimum Distance Attack)

The **minimum distance attack** finds a perturbed data x by solving the optimization

minimize
$$\|\mathbf{x} - \mathbf{x}_0\|$$
 subject to $\max_{j \neq t} \{g_j(\mathbf{x})\} - g_t(\mathbf{x}) \le 0,$ (1)

where $\|\cdot\|$ can be any norm specified by the user.

- I want to make you to class C_t .
- So the constraint needs to be satisfied.
- But I also want to minimize the attack strength. This gives the objective.

Maximum Loss Attack

Definition (Maximum Loss Attack)

The **maximum loss attack** finds a perturbed data x by solving the optimization

maximize
$$g_t(\mathbf{x}) - \max_{j \neq t} \{g_j(\mathbf{x})\}$$
 subject to $\|\mathbf{x} - \mathbf{x}_0\| \leq \eta$, (2)

where $\|\cdot\|$ can be any norm specified by the user, and $\eta>0$ denotes the attack strength.

- I want to bound my attack $\|x x_0\| \le \eta$
- I want to make $g_t(x)$ as big as possible
- So I want to maximize $g_t(\mathbf{x}) \max_{j \neq t} \{g_j(\mathbf{x})\}$
- This is equivalent to

minimize
$$\max_{j \neq t} \{g_j(\mathbf{x})\} - g_t(\mathbf{x})$$

subject to $\|\mathbf{x} - \mathbf{x}_0\| \leq \eta$,

Regularization-based Attack

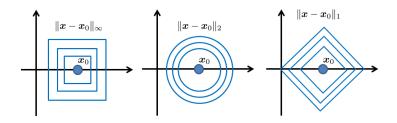
Definition (Regularization-based Attack)

The **regularization-based attack** finds a perturbed data x by solving the optimization

where $\|\cdot\|$ can be any norm specified by the user, and $\lambda>0$ is a regularization parameter.

- Combine the two parts via regularization
- By adjusting $(\epsilon, \eta, \lambda)$, all three will give the same optimal value.

Understanding the Geometry: Objective Function



- ℓ_0 -norm: $\varphi(\mathbf{x}) = \|\mathbf{x} \mathbf{x}_0\|_0$, which gives the most sparse solution. Useful when we want to limit the number of attack pixels.
- ℓ_1 -norm: $\varphi(\mathbf{x}) = \|\mathbf{x} \mathbf{x}_0\|_1$, which is a convex surrogate of the ℓ_0 -norm.
- ℓ_{∞} -norm: $\varphi(\mathbf{x}) = \|\mathbf{x} \mathbf{x}_0\|_{\infty}$, which minimizes the maximum element of the perturbation.

Understanding the Geometry: Constraint

The constraint set is

$$\Omega = \{ \boldsymbol{x} \mid \max_{j \neq t} \{ g_j(\boldsymbol{x}) \} - g_t(\boldsymbol{x}) \leq 0 \}$$

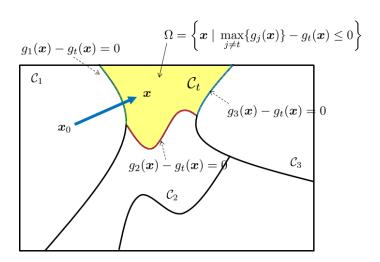
• We can write Ω as

$$\Omega = \left\{ oldsymbol{x} & \left| egin{array}{ccc} g_1(oldsymbol{x}) - g_t(oldsymbol{x}) & \leq 0 \ g_2(oldsymbol{x}) - g_t(oldsymbol{x}) & \leq 0 \ dots & dots \ g_k(oldsymbol{x}) - g_t(oldsymbol{x}) & \leq 0 \end{array}
ight\}$$

• Remark: If you want to replace max by i^* , then i^* is a function of x:

$$\Omega = \left\{ \boldsymbol{x} \mid g_{i^*(\boldsymbol{x})}(\boldsymbol{x}) - g_t(\boldsymbol{x}) \leq 0 \right\}.$$

Understanding the Geometry: Constraint



Linear Classifier

- Let us take a closer look at the linear case.
- Each discriminant function takes the form

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i,0}.$$

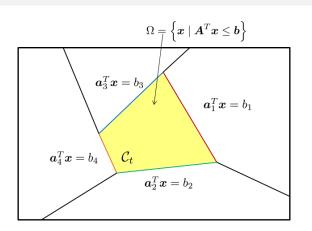
 The decision boundary between the i-th class and the t-th class is therefore

$$g(x) = (w_i - w_t)^T x + w_{i,0} - w_{t,0} = 0.$$

• The constraint set Ω is

$$\begin{bmatrix} \mathbf{w}_{1}^{T} - \mathbf{w}_{t}^{T} \\ \vdots \\ \mathbf{w}_{t-1}^{T} - \mathbf{w}_{t}^{T} \\ \mathbf{w}_{t+1}^{T} - \mathbf{w}_{t}^{T} \\ \vdots \\ \mathbf{w}_{k}^{T} - \mathbf{w}_{t}^{T} \end{bmatrix} \mathbf{x} + \begin{bmatrix} w_{1,0} - w_{t,0} \\ \vdots \\ w_{t-1,0} - w_{t,0} \\ w_{t+1,0} - w_{t,0} \\ \vdots \\ w_{k,0} - w_{t,0} \end{bmatrix} \leq \mathbf{0} \Leftrightarrow \mathbf{A}^{T} \mathbf{x} \leq \mathbf{b}$$

Linear Classifier



- You can show $\Omega = \{ \boldsymbol{A}^T \boldsymbol{x} \leq \boldsymbol{b} \}$ is convex.
- But the complement $\Omega^c = \{ \boldsymbol{A}^T \boldsymbol{x} > \boldsymbol{b} \}$ is not convex.
- So targeted attack is easier to analyze than untargeted attack.

Attack: The Simplest Example

The optimization is:

minimize
$$\| \boldsymbol{x} - \boldsymbol{x}_0 \|$$
 subject to $\max_{j \neq t} \{ g_j(\boldsymbol{x}) \} - g_t(\boldsymbol{x}) \le 0,$

- ullet Suppose we use ℓ_2 -norm, and consider **linear** classifiers, then
- the attack is given by

minimize
$$\|\mathbf{x} - \mathbf{x}_0\|^2$$
 subject to $\mathbf{A}^T \mathbf{x} \leq \mathbf{b}$,

- This is a quadratic programming problem.
- We will discuss how to solve this problem analytically.

Summary

- Adversarial attack is a universal phenomenon for any classifier.
- Attacking deep networks are popular because people think that they are unbeatable.
- There is really nothing too magical behind adversarial attack.
- All attacks are based on one of the three forms of attacks.
- Deep networks are trickier, as we will see, because the internal model information is not easy to extract.
- We will learn the basic principles of attacks, and try to gain insights from linear models.