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@ In linear discriminant analysis (LDA), there are generally two types of
approaches
o Generative approach: Estimate model, then define the classifier

o Discriminative approach: Directly define the classifier
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Discriminative Approaches
@ Lecture 14 Logistic Regression 1

@ Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 2

@ Gradient Descent
o Convexity
o Gradient
e Regularization

@ Connection with Bayes
e Derivation
e Interpretation

@ Comparison with Linear Regression
e Is logistic regression better than linear?

o Case studies
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|
From Linear to Logistic Regression
e Can we replace g(x) by sign(g(x))?

@ How about a soft-version of sign(g(x))?
@ This gives a logistic regression.

rF 3 y
11 aasee—
1
h(x) = 1 + e~ (wTa+wo)
0 €T
Cz = {z | hiz) < 1/2} Ci = {=z | h(z) > 1/2}
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Logistic Regression and Deep Learning

Logistic regression can be considered as the last layer of a deep
network

Inputs are x,, weights are w

The sigmoid function is the nonlinear activation

To train the model, you compare the prediction error and minimize
the loss by updating the weights
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Training Loss Function

J(0)

@ This is called the cross-entropy loss
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L(hg(xn), ¥n)

—{¥ntog ho(xs) + (1 = yu) log(1 — ho(xn) }

@ Consider two cases

Ynlog ho(x,) = {

(1 - }/n)(]- - |og hg(xn)) = {

@ No solution if mismatch
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Convexity of Logistic Training Loss

Recall that

50) = 3 ~{aton (1207 1 g1 )

n=1

@ The first term is linear, so it is convex.
@ The second term: Gradient:

Vo[ log(1 — he(x))] = =V ['Og (1 - ml_orxﬂ
—07x

=—Vp [Iog e 07X _ log(1 + e*OTX)}

me ['°g Treo

= -V [—HTx — log(1 + e_eTx)} =x+ Vg [Iog (1 T e_eTx)}

_efOTx
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Convexity of Logistic Training Loss

@ Gradient of second term is
Vo[—log(1 — hg(x))] = hg(x)x.
@ Hessian is:

Vol log(1 — ho(x))] = Vg [he(x)x]

= hg(x)[1 — ho(x)]xxT.
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Convexity of Logistic Training Loss

@ Forany v € RY, we have that

v V3[—log(1 — he(x))]v = v [he(x)[1 — he(x)]xxT | v

= (ho(x)[1 — he(x)]) v x||* > 0.

@ Therefore the Hessian is positive semi-definite.
@ So —log(1 — hg(x) is convex in 6.

@ Conclusion: The training loss function

50)= 3 ~{nton (1720 g1 - (o)

] 1-— hg(X,,)

is convex in 6.

@ So we can use convex optimization algorithms to find 6.
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Convex Optimization for Logistic Regression

@ We can use CVX to solve the logistic regression problem
@ But it requires some re-organization of the equations

N
1(0) = 3" {07 xn + log(1 ~ ho(x))}

n=1
- eOTxn
—{y,,@ X, + log 1—m }

—{ynOTxn — log (1 + e"TX") }

I
M=

n=1

I
NE

Il
—

n
N T N

= — (Z y,,x,,) 0 — Z log (1 + eOTXn>
n=1 n=1

o The last term is a sum of log-sum-exp: log(e® + egTX).
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Convex Optimization for Logistic Regression

o COCOOEHEN) OAADOOCHIIED CIINEED

O Data q
Estimated
True

@ Black: The true model. You create it.
@ Blue circles: Samples drawn from the true distribution.

@ Red: Trained model from the samples.
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Gradient Descent for Logistic Regression

@ The training loss function is

n

J(e) = Z _{yneTxn + IOg(l - hB(Xn))}'

n=1

@ Recall that
Vo[~ log(1 — he(x))] = he(x)x.

@ You can run gradient descent

o+ = 90k — 0, V(6
N
=00 — Ok (Z(ho(k) (xn) — )/n)xn) .
n=1
@ Since the loss function is convex, guaranteed to find global minimum.
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Regularization in Logistic Regression

@ The loss function is

n

1(0) = 3" {07 xn + log(1 ~ ho(x2))}

n=1
4 1
e (1o L)}
n=1 1 + eie X

o What if hg(x,) = 1?7 (We need 87 x, = cc.)
@ Then we have log(1 — 1) = log 0, which is —c0.
@ Same thing happens in the equivalent form

N

N T
J(O) = — (Z y,,x,,) 0 — Z log (1 + eeT"")
n=1

n=1

@ When 87 x, — oo, we have log(cc).
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Regularization in Logistic Regression

e Example: Two classes: N(0,1) and A/(10,1).

@ Run CVX
1k GD(;E'G)O B
0.8 - B
0.6 [ 7
04 1
0.2 i
0 —————Od@DaImb—o6- 4
@ 5 (‘) ; 1‘0 15

@ NaN fory, =1
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Regularization in Logistic Regression

@ Add a small regularization

N T N
1(6) = - (Zynxn) 6 tog (1+¢7') b+ Al6]2.
n=1

n=1

@ Re-run the same CVX program

1k

0.8

0.6

0.4

0.2
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Regularization in Logistic Regression

o If you make A really really small ...

N

N T
J(68) = — (Zynxn) 0> log (14770 b+ A6
n=1

n=1

@ Re-run the same CVX program

1k

0.8

0.6

0.4

0.2
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Try This Online Exercise

@ Classify two digits in the MNIST dataset

@ http://ufldl.stanford.edu/tutorial/supervised/

LogisticRegression/

Exercise 1B
Starter code for this exercise is included in the Starter Code GitHub Repo in the exl/ directory.
In this exercise you will implement the objective function and gradient computations for logistic

regression and use your code to learn to classify images of digits from the MNIST d:
or “I". Some examples of these digits are shown below:

o0]o
11/

Each of the digits is is represented by a 28x28 grid of pixel intensities, which we will reformat as a vector
() with 28%28 = 784 elements. The label is binary, so y@) € {0,1}.

et as either “0”

You will find starter code for this exercise in the ex1/exib_logreg.n file. The starter code file performs
the following tasks for you:

1. Calls ex1_load_mnist.m toload the MNIST training and testing data. In addition to loading the pixel
values into a matrix X (so that that jth pixel of the i'th example is Xj; = r‘J"; and the labels into a
row-vector y, it will also perform some simple normalizations of the pixel intensities so that they
tend to have zero mean and unit variance. Even though the MNIST dataset contains 10 different
digits (0-9), in this exercise we will only load the 0 and 1 digits — the ex1_load_mnist function will
do this for you.

2. The code will append a row of I's so that f will act as an intercept term.

@

The code calls minfunc with the logistic_regression.n file as objective function. Your job will be
tofill in logistic_regression.m to return the objective function value and its gradient.

4. After minfunc completes, the classification accuracy on the training set and test set will be printed
out

As for the linear regression exercise, you will need to implement logistic_regr

on.m to loop over all

Exercise: PCA Whitening

Sparse Coding

IcA

RICA

Exercise: RICA
Self-Taught Learning

Self-Taught Learning

Exercise: Self-Taught
Learning
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Discriminative Approaches
@ Lecture 14 Logistic Regression 1

@ Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 2

o Gradient Descent
e Convexity
e Gradient
e Regularization

@ Connection with Bayes
e Derivation
e Interpretation

@ Comparison with Linear Regression
e Is logistic regression better than linear?

o Case studies
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Connection with Bayes

@ The likelihood is
1

PN =T

@ The prior is py (i) = ;.

exp {—;(X — ) TE T (x - Ni)}

@ The posterior is

p(x[1)py (1)

1llx) =
PN = oy (1) + p(x|0)pv (0)
1 1
- p(x[0)py (0) — (xID)py (1)
L+ ey 1+exp {— log (iﬁ(xm)ﬁim))}
1

1+ exp {— log (%) — log (ﬁglég) } |
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Connection with Bayes

@ We can show that the last term is

<p(x|1))

€\ p(x[0)

e (\/Qlﬁexp{é(XM)T}:l(xm)})
Vs p{—3(x = 11o) TE " (x — o) }

= [ ) TR O )~ x ) TE )]

_ 1 _ _
= (11— o) ' Z7x = 5 (ulTZ Yy —pg T 1#0) :
@ Let us define

w =X (1 — o)

_ _ 1
(ulTZ Yy — g X 1uo) + log (m)

N

wo = —
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Connection with Bayes

@ Then,

p(x|1 _ 1 _ _
log< (] )> = (11— o) ' E7x = 5 (ulTZ Yy —pg T 1M0>
=w'x+w— log 71 /7o
@ Therefore,
(11x) .
p(1]x) = -

1+ exp {— log (%) — log (gExIég)}

_ 1
1+exp{—(w'x+ wp)}

= hg(x)
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Connection with Bayes

@ The hypothesis function is the posterior distribution

1
1+ exp{—(wTx + wp)}
exp{—(wTx + wp)
1+ exp{—(wTx+wo)}

py|x(1x) = = hg(x)

(1)

pyx(0[x) = =1— he(x),

@ So logistic regression offers probabilistic reasoning which linear
regression does not

@ Not true when the covariances are different

@ Remark: If the covariances are different, the Bayes returns a
quadratic classifier
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Discriminative Approaches
@ Lecture 14 Logistic Regression 1

@ Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 2

o Gradient Descent
e Convexity
e Gradient
e Regularization

o Connection with Bayes
e Derivation
e Interpretation

@ Comparison with Linear Regression
e Is logistic regression better than linear?
o Case studies
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Is Logistic Regression Better than Linear?

Logistic regression on the other hand can handle this outlier with no issue.

Now let's take a closer look at the logistic regression loss function.

f(w) = Zp; log (1 T e—y,,x,’,'w)

Here, I'm assuming the labels y,, are in {—1, —1}. Note that this is equivalent

£ Upvote - 11 €73 Share

2 oo

@ This is taken from the Internet
@ Is that true???
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Is Logistic Regression Better than Linear?

@ Scenario 1: Identical Covariance. Equal Prior. Enough samples.
e N(0,1) with 100 samples and A/(10,1) with 100 samples.

@ Linear and logistic: Not much different.

T T
1k

0.8

0.6 -

0.4 [ Bayes oracle
Bayes empirical
lin reg

o2/ M T lin reg decision
log reg

----- log reg decision
X true samples
0 O training samples | |
1
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The False Sense of Good Fitting

@ Scenario 2: Identical Covariance. Equal Prior. Not a lot of samples.
e N(0,2) with 10 samples and N(10,2) with 10 samples.

@ Linear and logistic: Not much different.

0.8

0.6

0.4

0.2

W Bayes oracle
Bayes empirical
lin reg

----- lin reg decision
log reg

————— log reg decision
X true samples
O training samples | |

15
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Is Logistic Regression Better than Linear?

@ Scenario 3: Different Covariance. Equal Prior.
e N(0,2) with 50 samples and N(10,0.2) with 50 samples.
@ Linear and logistic: Equally bad.

1+
0.8 -
0.6 - y/,/
04 W Bayes oracle
Bayes empirical
lin reg
o2 /i 4 T lin reg decision
log reg
————— log reg decision
X true samples
0 O training samples [™]
1 1 1
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Is Logistic Regression Better than Linear?

@ Scenario 4: Identical Covariance. Unequal Prior.
@ Training size proportional to prior: 180 samples and 20 samples.
e N(0,1) with mop = 0.9 and N(10,1) with m; = 0.1.
rent.

@ Linear and logistic: Not much diffe

1

0.8

0.6

0.4

0.2

x

o

Bayes oracle -
Bayes empirical
lin reg

lin reg decision
log reg

log reg decision
true samples
training samples | |
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So what can we say about Logistic Regression?

Logistic regression empowers a discriminative method with
probabilistic reasonings.

The hypothesis function is the posterior probability

1
1+exp{—(wTx+ wy)}
exp{—(wTx + wp)

p(0[x) = 1+ exp{—(wTx+ wp)} =1 he(x),

p(1lx) = — ho(x)

Logistic is yet another special case of Bayesian

°
@ More or less the same performance as linear regression

@ Logistic can give lower training error — which looks better on plots.
°

But its generalization is similar to linear regression
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Reading List

Logistic Regression (Machine Learning Perspective)
o Chris Bishop's Pattern Recognition, Chapter 4.3
@ Hastie-Tibshirani-Friedman's Elements of Statistical Learning,
Chapter 4.4
o Stanford CS 229 Discriminant Algorithms
http://cs229.stanford.edu/notes/cs229-notesl.pdf
o CMU Lecture https:
//www.stat.cmu.edu/~cshalizi/uADA/12/lectures/chl12.pdf
@ Stanford Language Processing
https://web.stanford.edu/~jurafsky/slp3/ (Lecture 5)
Logistic Regression (Statistics Perspective)
@ Duke Lecture https://www2.stat.duke.edu/courses/Springl3/
stal102.001/Lec/Lec20.pdf
@ Princeton Lecture

https://data.princeton.edu/wws509/notes/c3.pdf
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