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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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From Linear to Logistic Regression

Can we replace g(x) by sign(g(x))?

How about a soft-version of sign(g(x))?

This gives a logistic regression.
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Logistic Regression and Deep Learning

Logistic regression can be considered as the last layer of a deep
network

Inputs are xn, weights are w
The sigmoid function is the nonlinear activation

To train the model, you compare the prediction error and minimize
the loss by updating the weights
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Training Loss Function

J(θ) =
N∑

n=1

L(hθ(xn), yn)

=
N∑

n=1

−
{
yn log hθ(xn) + (1− yn) log(1− hθ(xn))

}

This is called the cross-entropy loss

Consider two cases

yn log hθ(xn) =

{
0, if yn = 1, and hθ(xn) = 1,

−∞, if yn = 1, and hθ(xn) = 0,

(1− yn)(1− log hθ(xn)) =

{
0, if yn = 0, and hθ(xn) = 0,

−∞, if yn = 0, and hθ(xn) = 1.

No solution if mismatch
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Convexity of Logistic Training Loss

Recall that

J(θ) =
n∑

n=1

−
{
yn log

(
hθ(xn)

1− hθ(xn)

)
+ log(1− hθ(xn))

}
The first term is linear, so it is convex.
The second term: Gradient:

∇θ[− log(1− hθ(x))] = −∇θ

[
log

(
1− 1

1 + e−θ
T x

)]
= −∇θ

[
log

e−θ
T x

1 + e−θ
T x

]
= −∇θ

[
log e−θ

T x − log(1 + e−θ
T x)
]

= −∇θ

[
−θTx − log(1 + e−θ

T x)
]

= x +∇θ

[
log
(

1 + e−θ
T x
)]

= x +

(
−e−θT x

1 + e−θ
T x

)
x = hθ(x)x .
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Convexity of Logistic Training Loss

Gradient of second term is

∇θ[− log(1− hθ(x))] = hθ(x)x .

Hessian is:

∇2
θ[− log(1− hθ(x))] = ∇θ [hθ(x)x ]

= ∇θ

[(
1

1 + e−θ
T x

)
x
]

=

(
1

(1 + e−θ
T x)2

)(
−e−θ

T x
)

xxT

=

(
1

1 + e−θ
T x

)(
1− 1

1 + e−θ
T x

)
xxT

= hθ(x)[1− hθ(x)]xxT .
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Convexity of Logistic Training Loss

For any v ∈ Rd , we have that

vT∇2
θ[− log(1− hθ(x))]v = vT

[
hθ(x)[1− hθ(x)]xxT

]
v

= (hθ(x)[1− hθ(x)]) ‖vTx‖2 ≥ 0.

Therefore the Hessian is positive semi-definite.

So − log(1− hθ(x) is convex in θ.

Conclusion: The training loss function

J(θ) =
n∑

n=1

−
{
yn log

(
hθ(xn)

1− hθ(xn)

)
+ log(1− hθ(xn))

}
is convex in θ.

So we can use convex optimization algorithms to find θ.
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Convex Optimization for Logistic Regression

We can use CVX to solve the logistic regression problem

But it requires some re-organization of the equations

J(θ) =
N∑

n=1

−
{
ynθ

Txn + log(1− hθ(xn))
}

=
N∑

n=1

−
{
ynθ

Txn + log

(
1− eθ

T xn

1 + eθ
T xn

)}
=

N∑
n=1

−
{
ynθ

Txn − log
(

1 + eθ
T xn

)}

= −


(

N∑
n=1

ynxn

)T

θ −
N∑

n=1

log
(

1 + eθ
T xn

) .

The last term is a sum of log-sum-exp: log(e0 + eθ
T x).
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Convex Optimization for Logistic Regression
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Black: The true model. You create it.

Blue circles: Samples drawn from the true distribution.

Red: Trained model from the samples.
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Gradient Descent for Logistic Regression

The training loss function is

J(θ) =
n∑

n=1

−
{
ynθ

Txn + log(1− hθ(xn))
}
.

Recall that
∇θ[− log(1− hθ(x))] = hθ(x)x .

You can run gradient descent

θ(k+1) = θ(k) − αk∇θJ(θ(k))

= θ(k) − αk

(
N∑

n=1

(hθ(k)(xn)− yn)xn

)
.

Since the loss function is convex, guaranteed to find global minimum.

12 / 30



c©Stanley Chan 2020. All Rights Reserved.

Regularization in Logistic Regression

The loss function is

J(θ) =
n∑

n=1

−
{
ynθ

Txn + log(1− hθ(xn))
}

=
n∑

n=1

−
{
ynθ

Txn + log

(
1− 1

1 + e−θ
T xn

)}
What if hθ(xn) = 1? (We need θTxn =∞.)

Then we have log(1− 1) = log 0, which is −∞.

Same thing happens in the equivalent form

J(θ) = −


(

N∑
n=1

ynxn

)T

θ −
N∑

n=1

log
(

1 + eθ
T xn

) .

When θTxn →∞, we have log(∞).
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Regularization in Logistic Regression

Example: Two classes: N (0, 1) and N (10, 1).

Run CVX
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NaN for yn = 1
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Regularization in Logistic Regression

Add a small regularization

J(θ) = −


(

N∑
n=1

ynxn

)T

θ −
N∑

n=1

log
(

1 + eθ
T xn

)+ λ‖θ‖2.

Re-run the same CVX program
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Regularization in Logistic Regression

If you make λ really really small ...

J(θ) = −


(

N∑
n=1

ynxn

)T

θ −
N∑

n=1

log
(

1 + eθ
T xn

)+ λ‖θ‖2.

Re-run the same CVX program
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Try This Online Exercise

Classify two digits in the MNIST dataset

http://ufldl.stanford.edu/tutorial/supervised/

LogisticRegression/
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Connection with Bayes

The likelihood is

p(x |i) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µi )

TΣ−1(x − µi )

}
The prior is pY (i) = πi .

The posterior is

p(1|x) =
p(x |1)pY (1)

p(x |1)pY (1) + p(x |0)pY (0)

=
1

1 + p(x |0)pY (0)
p(x |1)pY (1)

=
1

1 + exp
{
− log

(
p(x |1)pY (1)
p(x |0)pY (0)

)}
=

1

1 + exp
{
− log

(
π1
π0

)
− log

(
p(x |1)
p(x |0)

)} .
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Connection with Bayes

We can show that the last term is

log

(
p(x |1)

p(x |0)

)

= log

 1√
(2π)d |Σ|

exp
{
−1

2(x − µ1)TΣ−1(x − µ1)
}

1√
(2π)d |Σ|

exp
{
−1

2(x − µ0)TΣ−1(x − µ0)
}


= −1

2

[
(x − µ1)TΣ−1(x − µ1)− (x − µ0)TΣ−1(x − µ0)

]
= (µ1 − µ0)TΣ−1x − 1

2

(
µT
1 Σ−1µ1 − µT

0 Σ−1µ0

)
.

Let us define

w = Σ−1(µ1 − µ0)

w0 = −1

2

(
µT
1 Σ−1µ1 − µT

0 Σ−1µ0

)
+ log

(
π1
π0

)
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Connection with Bayes

Then,

log

(
p(x |1)

p(x |0)

)
= (µ1 − µ0)TΣ−1x − 1

2

(
µT
1 Σ−1µ1 − µT

0 Σ−1µ0

)
= wTx + w0 − log π1/π0

Therefore,

p(1|x) =
1

1 + exp
{
− log

(
π1
π0

)
− log

(
p(x |1)
p(x |0)

)}
=

1

1 + exp{−(wTx + w0)}
= hθ(x)
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Connection with Bayes

The hypothesis function is the posterior distribution

pY |X (1|x) =
1

1 + exp{−(wTx + w0)}
= hθ(x)

pY |X (0|x) =
exp{−(wTx + w0)

1 + exp{−(wTx + w0)}
= 1− hθ(x),

(1)

So logistic regression offers probabilistic reasoning which linear
regression does not

Not true when the covariances are different

Remark: If the covariances are different, the Bayes returns a
quadratic classifier
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Is Logistic Regression Better than Linear?

This is taken from the Internet

Is that true???
24 / 30



c©Stanley Chan 2020. All Rights Reserved.

Is Logistic Regression Better than Linear?

Scenario 1: Identical Covariance. Equal Prior. Enough samples.

N (0, 1) with 100 samples and N (10, 1) with 100 samples.

Linear and logistic: Not much different.
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The False Sense of Good Fitting

Scenario 2: Identical Covariance. Equal Prior. Not a lot of samples.

N (0, 2) with 10 samples and N (10, 2) with 10 samples.

Linear and logistic: Not much different.
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Is Logistic Regression Better than Linear?

Scenario 3: Different Covariance. Equal Prior.

N (0, 2) with 50 samples and N (10, 0.2) with 50 samples.

Linear and logistic: Equally bad.
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Is Logistic Regression Better than Linear?

Scenario 4: Identical Covariance. Unequal Prior.
Training size proportional to prior: 180 samples and 20 samples.
N (0, 1) with π0 = 0.9 and N (10, 1) with π1 = 0.1.
Linear and logistic: Not much different.
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So what can we say about Logistic Regression?

Logistic regression empowers a discriminative method with
probabilistic reasonings.

The hypothesis function is the posterior probability

p(1|x) =
1

1 + exp{−(wTx + w0)}
= hθ(x)

p(0|x) =
exp{−(wTx + w0)

1 + exp{−(wTx + w0)}
= 1− hθ(x),

Logistic is yet another special case of Bayesian

More or less the same performance as linear regression

Logistic can give lower training error — which looks better on plots.

But its generalization is similar to linear regression
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Reading List

Logistic Regression (Machine Learning Perspective)

Chris Bishop’s Pattern Recognition, Chapter 4.3

Hastie-Tibshirani-Friedman’s Elements of Statistical Learning,
Chapter 4.4

Stanford CS 229 Discriminant Algorithms
http://cs229.stanford.edu/notes/cs229-notes1.pdf

CMU Lecture https:

//www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf

Stanford Language Processing
https://web.stanford.edu/~jurafsky/slp3/ (Lecture 5)

Logistic Regression (Statistics Perspective)

Duke Lecture https://www2.stat.duke.edu/courses/Spring13/

sta102.001/Lec/Lec20.pdf

Princeton Lecture
https://data.princeton.edu/wws509/notes/c3.pdf
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