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@ In linear discriminant analysis (LDA), there are generally two types of
approaches

@ Generative approach: Estimate model, then define the classifier

o Discriminative approach: Directly define the classifier
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Discriminative Approaches
o Lecture 14 Logistic Regression 1

@ Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 1

@ From Linear to Logistic
e Motivation
e Loss Function
o Why not L2 Loss?

o Interpreting Logistic
e Maximum Likelihood
e Log-odd

o Convexity
e Is logistic loss convex?
e Computation
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Geometry of Linear Regression

@ The discriminant function g(x) is linear

@ The hypothesis function h(x) = sign(g(x)) is a unit step

+1
—
i) = signlala))
1
Ca = {z | g(x) < 0} G = {=| g(=) > 0}
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From Linear to Logistic Regression
e Can we replace g(x) by sign(g(x))?

@ How about a soft-version of sign(g(x))?
@ This gives a logistic regression.
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Sigmoid Function

The function

h(x) 1

1

is called a sigmoid function.

Its 1D form is
1
P00 = ey
a controls the transient speed

Xp controls the cutoff location
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Sigmoid Function

@ Note that
h(x) =1, as x— oo,

h(x) -0, as x— —oo,

@ So h(x) can be regarded as a “probability”.
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Sigmoid Function

@ Derivative is

) e

—a(x X0) 1
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=a(l- 14 e a(x x0)> <1+e—a(X_XO))

— h()][A(x)]-
Since 0 < h(x) <0, we have 0 < 1 — h(x) < 1.

Therefore, the derivative is always positive.

So h is an increasing function.

Hence h can be considered as a “CDF".
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Sigmoid Function
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From Linear to Logistic Regression
e Can we replace g(x) by sign(g(x))?

@ How about a soft-version of sign(g(x))?
@ This gives a logistic regression.

rF 3
Y
+1 )V B aEme -
; 1
) = 1+ e (wTlatug)
0 €T
Co ={z | h(z) < 1/2} Ci ={z| h(z) > 1/2}

10/25



Loss Function for Linear Regression

@ All discriminant algorithms have a Training Loss Function
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@ In linear regression,
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Training Loss for Logistic Regression

J(0) = > L(ho(xn), yn)
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@ This loss is also called the cross-entropy loss.
@ Why do we want to choose this cost function?

@ Consider two cases

Ynlog he(x,) = {

(1 = yn)(1 = log ho(x,)) = {

@ No solution if mismatch

Yn 17
Yn = 1,
yn =20,
Yn = 0,

and
and

and
and

~{ynlog ha(xa) + (1~ ya) log(1 — ho(x,) }
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Why Not L2 Loss?

@ Why not use L2 loss?

@ Let's look at the 1D case:

1 2
J(6) = <1+e—9x _y> '
This is NOT convex!

How about the logistic loss?

J(0) =y log (Hlegx> +(1—y)log <1 - Htgx>

This is convex!
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Why Not L2 Loss?

@ Experiment: Set x =1and y = 1.
e Plot J() as a function of 6.

L2 Logistic

@ So the L2 loss is not convex, but the logistic loss is concave (negative
is convex)

o If you do gradient descent on L2, you will be trapped at local minima
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Discriminative Approaches
o Lecture 14 Logistic Regression 1

@ Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 1

@ From Linear to Logistic
e Motivation
e Loss Function
e Why not L2 Loss?

@ Interpreting Logistic
o Maximum Likelihood
e Log-odd

o Convexity
e Is logistic loss convex?
e Computation
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The Maximum-Likelihood Perspective

@ We can show that

argmin J(0)
0
N

= argmm Z {y,, log hg(xn) + (1 — yn) log(1 — hG(xn))}

N

= argmln — log (H hg(x,)"" (1 — he(Xn))l_y">

n=1

N
= argmax [ {o(xn)"(1 — hoxa))* >}
n=1
@ This is maximum-likelihood for a Bernoulli random variable y,

@ The underlying probability is hg(x,)
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Interpreting h(x,)

@ Maximume-likelihood Bernoulli:

0" = argrenax ll_V[ {hg(x,,)y"(l — hg(x,,))l_y”}.

n=1
@ We can interpret hg(x,) as a probability p. So:
he(xn) =p, and 1— hg(x,)=1—p.
@ But p is a function of x,,. So how about
he(xn) = p(xn), and 1— he(x,) =1— p(x,).
@ And this probability is “after” you see x,. So how about
ho(xn) = p(1|xp), and 1—hg(x,)=1—p(1l]|x,)=p(0]|xp).

@ So hg(x,) is the posterior of observing x,,.
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Log-Odds

@ Let us rewrite J as

N
>~ ~{vnlog ha(xa) + (1 = ya) log(1 — ho(x)) |

o (22501 ) < tog(a ~ o))}

J(6)
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In statistics, the term log (132"(')’()”)) is called the log-odd.

o If we put h@(Xn) = ﬁ, we can show that
he(x) ST
2] X . 1+679 x . < GTX> . T
lo =lo =log (e =0"x.
() s ro B
+e=P X

Logistic regression is linear in the log-odd.

18/25



N
Outline

Discriminative Approaches
o Lecture 14 Logistic Regression 1

@ Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 1

@ From Linear to Logistic
e Motivation
e Loss Function
e Why not L2 Loss?

o Interpreting Logistic
e Maximum Likelihood
e Log-odd

o Convexity
o Is logistic loss convex?
o Computation
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Convexity of Logistic Training Loss

Recall that

50) =3 ~{aton (7207 1 g1 ()

n=1

@ The first term is linear, so it is convex.
@ The second term: Gradient:

Vo[ log(1 — he(x))] = =V ['Og (1 - ml_orxﬂ
-07x

=—Vp [Iog e 07X _ log(1 + e*OTX)}

efeTx

| e
= —Vp |lo
0 gl

= -V [—HTx — log(1 + e_eTx)} =x+Vyg [Iog (1 T e_eTx)}

_efOTx
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Convexity of Logistic Training Loss

@ Gradient of second term is

Vo[—log(1 — hg(x))] = he(x)x.

@ Hessian is:

Vol log(1 — ho(x))] = Vg [he(x)x]

=% (o)
) ((1 n el—eTxV) (o)
S

1 1 .
+ e"TX) (1 1+ e"TX> .

1
(x)[1— hg(X)]XXT.
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Convexity of Logistic Training Loss

@ Forany v e R9, we have that

v V5[ log(1 — he(x))]v = v [ho(x)[1 — he(x)]xx" | v
= (he(x)[1 — he(x)]) v "x||* > 0.
@ Therefore the Hessian is positive semi-definite.

@ So —log(1 — hg(x) is convex in 6.

@ Conclusion: The training loss function

5= ~{ynlog (%) +log(1 — hy(x,)}

n=1
is convex in 6.
@ So we can use convex optimization algorithms to find 6.
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Convex Optimization for Logistic Regression

@ We can use CVX to solve the logistic regression problem
@ But it requires some re-organization of the equations

N
1(0) =3 {107 x, +l0g(1 — ho(x)) }

n=1
T eBTxn
—{y,,@ Xn+|0g 1—m }

—{y,,GTx,, — log (1 + egT""> }

I
M=

n=1

I
M=

I
MR

N T N .
= — (Zynxn> 0 — Z log (1 +éf X”)
n=1 n=1

o The last term is a sum of log-sum-exp: log(e® + eeTX).
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Convex Optimization for Logistic Regression
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Reading List

Logistic Regression (Machine Learning Perspective)
o Chris Bishop's Pattern Recognition, Chapter 4.3
@ Hastie-Tibshirani-Friedman's Elements of Statistical Learning,
Chapter 4.4
o Stanford CS 229 Discriminant Algorithms
http://cs229.stanford.edu/notes/cs229-notesl.pdf
o CMU Lecture https:
//www.stat.cmu.edu/~cshalizi/uADA/12/lectures/chl12.pdf
@ Stanford Language Processing
https://web.stanford.edu/~jurafsky/slp3/ (Lecture 5)
Logistic Regression (Statistics Perspective)
@ Duke Lecture https://www2.stat.duke.edu/courses/Springl3/
stal102.001/Lec/Lec20.pdf
@ Princeton Lecture

https://data.princeton.edu/wws509/notes/c3.pdf
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