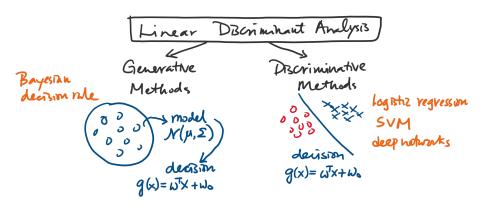
ECE595 / STAT598: Machine Learning I Lecture 14 Logistic Regression

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Overview



- In linear discriminant analysis (LDA), there are generally two types of approaches
- Generative approach: Estimate model, then define the classifier
- **Discriminative approach**: Directly define the classifier

Outline

Discriminative Approaches

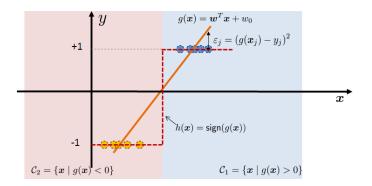
- Lecture 14 Logistic Regression 1
- Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 1

- From Linear to Logistic
 - Motivation
 - Loss Function
 - Why not L2 Loss?
- Interpreting Logistic
 - Maximum Likelihood
 - Log-odd
- Convexity
 - Is logistic loss convex?
 - Computation

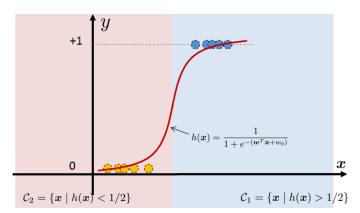
Geometry of Linear Regression

- The discriminant function g(x) is linear
- The hypothesis function h(x) = sign(g(x)) is a unit step



From Linear to Logistic Regression

- Can we replace g(x) by sign(g(x))?
- How about a soft-version of sign(g(x))?
- This gives a logistic regression.



The function

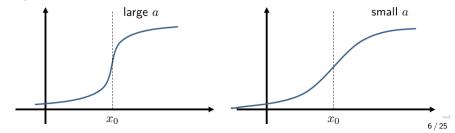
$$h(\mathbf{x}) = \frac{1}{1 + e^{-g(\mathbf{x})}} = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + w_0)}}$$

is called a sigmoid function.

• Its 1D form is

$$h(x) = \frac{1}{1 + e^{-a(x-x_0)}}, \quad \text{for some } a \text{ and } x_0,$$

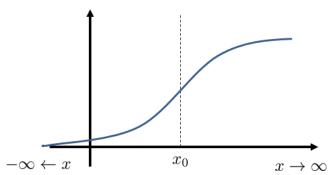
- a controls the transient speed
- x₀ controls the cutoff location



Note that

$$h(x) \to 1$$
, as $x \to \infty$, $h(x) \to 0$, as $x \to -\infty$,

• So h(x) can be regarded as a "probability".



Derivative is

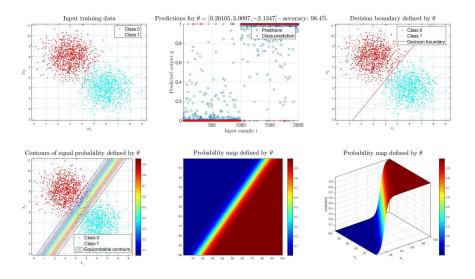
$$\frac{d}{dx} \left(\frac{1}{1 + e^{-a(x - x_0)}} \right) = -\left(1 + e^{-a(x - x_0)} \right)^{-2} \left(e^{-a(x - x_0)} \right) (-a)$$

$$= a \left(\frac{e^{-a(x - x_0)}}{1 + e^{-a(x - x_0)}} \right) \left(\frac{1}{1 + e^{-a(x - x_0)}} \right)$$

$$= a \left(1 - \frac{1}{1 + e^{-a(x - x_0)}} \right) \left(\frac{1}{1 + e^{-a(x - x_0)}} \right)$$

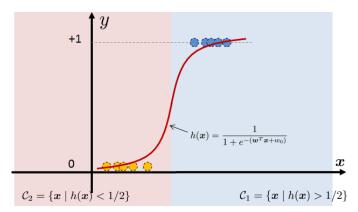
$$= a[1 - h(x)][h(x)].$$

- Since 0 < h(x) < 0, we have 0 < 1 h(x) < 1.
- Therefore, the derivative is always positive.
- So *h* is an increasing function.
- Hence h can be considered as a "CDF".



From Linear to Logistic Regression

- Can we replace g(x) by sign(g(x))?
- How about a soft-version of sign(g(x))?
- This gives a logistic regression.



Loss Function for Linear Regression

All discriminant algorithms have a Training Loss Function

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(g(\boldsymbol{x}_n), y_n).$$

In linear regression,

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} (g(\mathbf{x}_n) - y_n)^2$$

$$= \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n + w_0 - y_n)^2$$

$$= \frac{1}{N} \left\| \begin{bmatrix} \mathbf{x}_1^T & 1 \\ \vdots & \vdots \\ \mathbf{x}_N^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ w_0 \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_M \end{bmatrix} \right\|^2 = \frac{1}{N} \|\mathbf{A}\theta - \mathbf{y}\|^2.$$

Training Loss for Logistic Regression

$$J(\theta) = \sum_{n=1}^{N} \mathcal{L}(h_{\theta}(\mathbf{x}_n), y_n)$$

$$= \sum_{n=1}^{N} -\left\{y_n \log h_{\theta}(\mathbf{x}_n) + (1 - y_n) \log(1 - h_{\theta}(\mathbf{x}_n))\right\}$$

- This loss is also called the cross-entropy loss.
- Why do we want to choose this cost function?
- Consider two cases

$$y_n \log h_{\theta}(\mathbf{x}_n) = \begin{cases} 0, & \text{if} \quad y_n = 1, \quad \text{and} \quad h_{\theta}(\mathbf{x}_n) = 1, \\ -\infty, & \text{if} \quad y_n = 1, \quad \text{and} \quad h_{\theta}(\mathbf{x}_n) = 0, \end{cases}$$

$$(1 - y_n)(1 - \log h_{\theta}(\mathbf{x}_n)) = \begin{cases} 0, & \text{if} \quad y_n = 0, \quad \text{and} \quad h_{\theta}(\mathbf{x}_n) = 0, \\ -\infty, & \text{if} \quad y_n = 0, \quad \text{and} \quad h_{\theta}(\mathbf{x}_n) = 1. \end{cases}$$

No solution if mismatch

Why Not L2 Loss?

• Why not use L2 loss?

$$J(\theta) = \sum_{n=1}^{N} (h_{\theta}(\mathbf{x}_n) - y_n)^2$$

Let's look at the 1D case:

$$J(\theta) = \left(\frac{1}{1 + e^{-\theta x}} - y\right)^2.$$

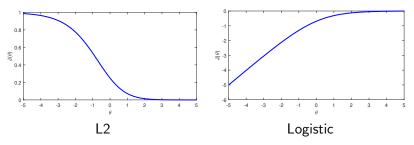
- This is NOT convex!
- How about the logistic loss?
- •

$$J(\theta) = y \log \left(\frac{1}{1 + e^{-\theta x}} \right) + (1 - y) \log \left(1 - \frac{1}{1 + e^{-\theta x}} \right)$$

This is convex!

Why Not L2 Loss?

- Experiment: Set x = 1 and y = 1.
- Plot $J(\theta)$ as a function of θ .



- So the L2 loss is not convex, but the logistic loss is concave (negative is convex)
- If you do gradient descent on L2, you will be trapped at local minima

Outline

Discriminative Approaches

- Lecture 14 Logistic Regression 1
- Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 1

- From Linear to Logistic
 - Motivation
 - Loss Function
 - Why not L2 Loss?
- Interpreting Logistic
 - Maximum Likelihood
 - Log-odd
- Convexity
 - Is logistic loss convex?
 - Computation

The Maximum-Likelihood Perspective

We can show that

$$\begin{aligned} & \underset{\theta}{\operatorname{argmin}} \quad J(\theta) \\ & = \underset{\theta}{\operatorname{argmin}} \quad \sum_{n=1}^{N} - \left\{ y_n \log h_{\theta}(\boldsymbol{x}_n) + (1 - y_n) \log(1 - h_{\theta}(\boldsymbol{x}_n)) \right\} \\ & = \underset{\theta}{\operatorname{argmin}} \quad - \log \left(\prod_{n=1}^{N} h_{\theta}(\boldsymbol{x}_n)^{y_n} (1 - h_{\theta}(\boldsymbol{x}_n))^{1 - y_n} \right) \\ & = \underset{\theta}{\operatorname{argmax}} \quad \prod_{n=1}^{N} \left\{ h_{\theta}(\boldsymbol{x}_n)^{y_n} (1 - h_{\theta}(\boldsymbol{x}_n))^{1 - y_n} \right\}. \end{aligned}$$

- This is maximum-likelihood for a Bernoulli random variable y_n
- The underlying probability is $h_{\theta}(x_n)$

Interpreting $h(x_n)$

Maximum-likelihood Bernoulli:

$$oldsymbol{ heta}^* = \mathop{\mathsf{argmax}}_{oldsymbol{ heta}} \ \prod_{n=1}^N \Big\{ h_{oldsymbol{ heta}}(oldsymbol{x}_n)^{y_n} (1 - h_{oldsymbol{ heta}}(oldsymbol{x}_n))^{1-y_n} \Big\}.$$

• We can interpret $h_{\theta}(x_n)$ as a probability p. So:

$$h_{\theta}(\mathbf{x}_n) = p$$
, and $1 - h_{\theta}(\mathbf{x}_n) = 1 - p$.

• But p is a function of x_n . So how about

$$h_{\theta}(\mathbf{x}_n) = p(\mathbf{x}_n), \quad \text{and} \quad 1 - h_{\theta}(\mathbf{x}_n) = 1 - p(\mathbf{x}_n).$$

• And this probability is "after" you see x_n . So how about

$$h_{\theta}(x_n) = p(1 \mid x_n), \text{ and } 1 - h_{\theta}(x_n) = 1 - p(1 \mid x_n) = p(0 \mid x_n).$$

• So $h_{\theta}(x_n)$ is the **posterior** of observing x_n .

Log-Odds

• Let us rewrite J as

$$J(\theta) = \sum_{n=1}^{N} -\left\{y_n \log h_{\theta}(\mathbf{x}_n) + (1 - y_n) \log(1 - h_{\theta}(\mathbf{x}_n))\right\}$$
$$= \sum_{n=1}^{N} -\left\{y_n \log \left(\frac{h_{\theta}(\mathbf{x}_n)}{1 - h_{\theta}(\mathbf{x}_n)}\right) + \log(1 - h_{\theta}(\mathbf{x}_n))\right\}$$

- In statistics, the term $\log\left(\frac{h_{\theta}(x_n)}{1-h_{\theta}(x_n)}\right)$ is called the log-odd.
- If we put $h_{ heta}(x_n) = rac{1}{1+e^{- heta^T x}}$, we can show that

$$\log\left(\frac{h_{\theta}(\mathbf{x})}{1-h_{\theta}(\mathbf{x})}\right) = \log\left(\frac{\frac{1}{1+e^{-\theta^T \mathbf{x}}}}{\frac{e^{-\theta^T \mathbf{x}}}{1+e^{-\theta^T \mathbf{x}}}}\right) = \log\left(e^{\theta^T \mathbf{x}}\right) = \theta^T \mathbf{x}.$$

• Logistic regression is linear in the log-odd.

Outline

Discriminative Approaches

- Lecture 14 Logistic Regression 1
- Lecture 15 Logistic Regression 2

This lecture: Logistic Regression 1

- From Linear to Logistic
 - Motivation
 - Loss Function
 - Why not L2 Loss?
- Interpreting Logistic
 - Maximum Likelihood
 - Log-odd
- Convexity
 - Is logistic loss convex?
 - Computation

Convexity of Logistic Training Loss

Recall that

$$J(\theta) = \sum_{n=1}^{n} -\left\{y_n \log \left(\frac{h_{\theta}(x_n)}{1 - h_{\theta}(x_n)}\right) + \log(1 - h_{\theta}(x_n))\right\}$$

- The first term is linear, so it is convex.
- The second term: Gradient:

$$\begin{split} \nabla_{\theta}[-\log(1 - h_{\theta}(\mathbf{x}))] &= -\nabla_{\theta} \left[\log \left(1 - \frac{1}{1 + e^{-\theta^{T} \mathbf{x}}} \right) \right] \\ &= -\nabla_{\theta} \left[\log \frac{e^{-\theta^{T} \mathbf{x}}}{1 + e^{-\theta^{T} \mathbf{x}}} \right] = -\nabla_{\theta} \left[\log e^{-\theta^{T} \mathbf{x}} - \log(1 + e^{-\theta^{T} \mathbf{x}}) \right] \\ &= -\nabla_{\theta} \left[-\theta^{T} \mathbf{x} - \log(1 + e^{-\theta^{T} \mathbf{x}}) \right] = \mathbf{x} + \nabla_{\theta} \left[\log \left(1 + e^{-\theta^{T} \mathbf{x}} \right) \right] \\ &= \mathbf{x} + \left(\frac{-e^{-\theta^{T} \mathbf{x}}}{1 + e^{-\theta^{T} \mathbf{x}}} \right) \mathbf{x} = h_{\theta}(\mathbf{x}) \mathbf{x}. \end{split}$$

Convexity of Logistic Training Loss

Gradient of second term is

$$\nabla_{\theta}[-\log(1-h_{\theta}(x))] = h_{\theta}(x)x.$$

Hessian is:

$$\begin{split} \nabla_{\theta}^{2}[-\log(1-h_{\theta}(x))] &= \nabla_{\theta} \left[h_{\theta}(x)x\right] \\ &= \nabla_{\theta} \left[\left(\frac{1}{1+e^{-\theta^{T}x}}\right)x\right] \\ &= \left(\frac{1}{(1+e^{-\theta^{T}x})^{2}}\right)\left(-e^{-\theta^{T}x}\right)xx^{T} \\ &= \left(\frac{1}{1+e^{-\theta^{T}x}}\right)\left(1-\frac{1}{1+e^{-\theta^{T}x}}\right)xx^{T} \\ &= h_{\theta}(x)[1-h_{\theta}(x)]xx^{T}. \end{split}$$

Convexity of Logistic Training Loss

ullet For any $oldsymbol{v} \in \mathbb{R}^d$, we have that

$$\mathbf{v}^{T} \nabla_{\theta}^{2} [-\log(1 - h_{\theta}(\mathbf{x}))] \mathbf{v} = \mathbf{v}^{T} \left[h_{\theta}(\mathbf{x}) [1 - h_{\theta}(\mathbf{x})] \mathbf{x} \mathbf{x}^{T} \right] \mathbf{v}$$
$$= (h_{\theta}(\mathbf{x}) [1 - h_{\theta}(\mathbf{x})]) \| \mathbf{v}^{T} \mathbf{x} \|^{2} \ge 0.$$

- Therefore the Hessian is positive semi-definite.
- So $-\log(1-h_{\theta}(x))$ is convex in θ .
- Conclusion: The training loss function

$$J(\theta) = \sum_{n=1}^{n} -\left\{y_n \log \left(\frac{h_{\theta}(\mathbf{x}_n)}{1 - h_{\theta}(\mathbf{x}_n)}\right) + \log(1 - h_{\theta}(\mathbf{x}_n))\right\}$$

is **convex** in θ .

ullet So we can use convex optimization algorithms to find eta.

Convex Optimization for Logistic Regression

- We can use CVX to solve the logistic regression problem
- But it requires some re-organization of the equations

$$J(\theta) = \sum_{n=1}^{N} -\left\{y_n \theta^T \mathbf{x}_n + \log(1 - h_{\theta}(\mathbf{x}_n))\right\}$$

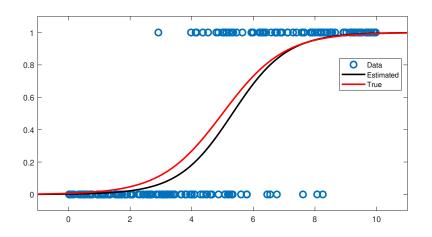
$$= \sum_{n=1}^{N} -\left\{y_n \theta^T \mathbf{x}_n + \log\left(1 - \frac{e^{\theta^T \mathbf{x}_n}}{1 + e^{\theta^T \mathbf{x}_n}}\right)\right\}$$

$$= \sum_{n=1}^{N} -\left\{y_n \theta^T \mathbf{x}_n - \log\left(1 + e^{\theta^T \mathbf{x}_n}\right)\right\}$$

$$= -\left\{\left(\sum_{n=1}^{N} y_n \mathbf{x}_n\right)^T \theta - \sum_{n=1}^{N} \log\left(1 + e^{\theta^T \mathbf{x}_n}\right)\right\}.$$

• The last term is a sum of log-sum-exp: $\log(e^0 + e^{\theta^T x})$.

Convex Optimization for Logistic Regression



Reading List

Logistic Regression (Machine Learning Perspective)

- Chris Bishop's Pattern Recognition, Chapter 4.3
- Hastie-Tibshirani-Friedman's Elements of Statistical Learning, Chapter 4.4
- Stanford CS 229 Discriminant Algorithms
 http://cs229.stanford.edu/notes/cs229-notes1.pdf
- CMU Lecture https: //www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf
- Stanford Language Processing https://web.stanford.edu/~jurafsky/slp3/ (Lecture 5)

Logistic Regression (Statistics Perspective)

- Duke Lecture https://www2.stat.duke.edu/courses/Spring13/ sta102.001/Lec/Lec20.pdf
- Princeton Lecture
 https://data.princeton.edu/wws509/notes/c3.pdf