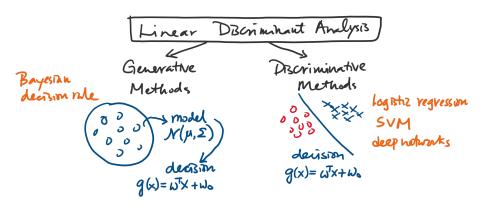
ECE 595: Machine Learning I Lecture 09 Bayesian Decision

Spring 2020

Stanley Chan

School of Electrical and Computer Engineering Purdue University

Overview



- In linear discriminant analysis (LDA), there are generally two types of approaches
- Generative approach: Estimate model, then define the classifier
- **Discriminative approach**: Directly define the classifier

Generative Approach

Goal: Construct a discriminant function $g(x) = \mathbf{w}^T x + w_0$ from the data.

- Suppose there are two classes C_1 and C_2 .
- Each class is modeled as a Gaussian.
- We are going to utilize two concepts:
- likelihood function

$$p_{\boldsymbol{X}|Y}(\boldsymbol{x}|i) = \mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

prior distribution

$$p_Y(i) = \pi_i$$

Outline

Generative Approaches

- Lecture 9 Bayesian Decision Rules
- Lecture 10 Evaluating Performance
- Lecture 11 Bayesian Parameter Estimation
- Lecture 12 Bayesian Prior
- Lecture 13 Connecting Bayesian and Linear Regression

Today's Lecture

- Review of High-Dimensional Gaussian
 - Likelihood and prior
 - Gaussian PDF
- Basic Principle
 - Making the Bayesian decision
 - 1D Illustration
- The Three Cases
 - $\Sigma_i = \sigma^2 I$
 - $\Sigma_i = \Sigma$ (Next Lecture)
 - General Σ_i (Next Lecture)

High-dimensional Gaussian

An d-dimensional Gaussian has a PDF

$$p_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d |\mathbf{\Sigma}|}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\},$$

where d denotes the dimensionality of the vector x.

• The mean vector μ is

$$oldsymbol{\mu} = \mathbb{E}[oldsymbol{X}] = egin{bmatrix} \mathbb{E}[X_1] \ dots \ \mathbb{E}[X_d] \end{bmatrix}$$

• The covariance matrix Σ is

$$\mathbf{\Sigma} = \mathbb{E}[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] = \begin{bmatrix} \operatorname{Var}[X_1] & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_d) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}[X_2] & \dots & \operatorname{Cov}(X_2, X_d) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_d, X_1) & \operatorname{Cov}(X_N, X_2) & \dots & \operatorname{Var}[X_d] \end{bmatrix}$$

• Σ is always positive semi-definite. (Why?)

Special Case: Diagonal Covariance

- Suppose that X_i and X_j are independent for all $i \neq j$.
- This implies $Cov(X_i, X_i) = 0$
- ullet Simplify $oldsymbol{\Sigma}$

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_d^2 \end{bmatrix},$$

• Then, the exponential is

$$(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = \sum_{i=1}^n \frac{(\mathbf{x}_i - \boldsymbol{\mu}_i)^2}{\sigma_i^2}.$$

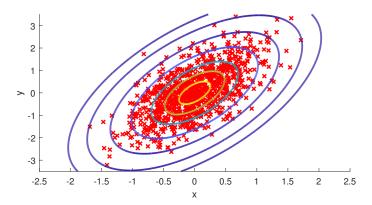
And hence, the PDF is

$$p_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{i}^{2}}} \exp\left\{-\frac{(x_{i} - \mu_{i})^{2}}{2\sigma_{i}^{2}}\right\}.$$

Visualization

• Generate 1000 random samples from a 2D Gaussian

•
$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, and $\mathbf{\Sigma} = \begin{bmatrix} 0.25 & 0.3 \\ 0.3 & 1 \end{bmatrix}$



Conditional Gaussian

- Data $\{x_1, ..., x_N\}$.
- Class $Y \in \{1, 2, ..., K\}$.
- Likelihood:

$$p_{\boldsymbol{X}|Y}(\boldsymbol{x}|k) = \text{Probability of getting } \boldsymbol{X} \text{ given } Y$$

Prior:

$$p_Y(k)$$
 = Probability of getting Y

Posterior:

$$p_{Y|X}(k|x) = \text{Probability of getting } Y \text{ given } X$$

Related by

$$p_{Y|X}(k|x) = \frac{p_{X|Y}(x|k)p_Y(k)}{p_X(x)} = \frac{p_{X|Y}(x|k)p_Y(k)}{\sum_k p_{X|Y}(x|k)p_Y(k)}$$

Example

- Two Gaussian $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ and $\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$.
- Prior probability of getting a class is

$$p_Y(1) = \pi_1$$
 and $p_Y(2) = \pi_2$.

The likelihood term is

$$egin{aligned} p_{oldsymbol{X}|Y}(oldsymbol{x}|k) &= \mathcal{N}(oldsymbol{x} \mid oldsymbol{\mu}_k, oldsymbol{\Sigma}_k) \ &= rac{1}{\sqrt{(2\pi)^d |oldsymbol{\Sigma}_k|}} \exp\left\{-rac{1}{2}(oldsymbol{x} - oldsymbol{\mu}_k)^T oldsymbol{\Sigma}_k^{-1} (oldsymbol{x} - oldsymbol{\mu}_k)
ight\} \end{aligned}$$

The posterior is

$$\begin{aligned} p_{Y|X}(k|x) &= \frac{p_{X|Y}(x|k)p_{Y}(k)}{p_{X}(x)} \\ &= \frac{\frac{1}{\sqrt{(2\pi)^{d}|\mathbf{\Sigma}_{k}|}} \exp\left\{-\frac{1}{2}(x-\mu_{k})^{T}\mathbf{\Sigma}_{k}^{-1}(x-\mu_{k})\right\} \cdot \pi_{k}}{\sum_{k=1}^{K} \frac{1}{\sqrt{(2\pi)^{d}|\mathbf{\Sigma}_{k}|}} \exp\left\{-\frac{1}{2}(x-\mu_{k})^{T}\mathbf{\Sigma}_{k}^{-1}(x-\mu_{k})\right\} \cdot \pi_{k}} \end{aligned}$$

Negative Log-Likelihood

Negative Log-Likelihood for Gaussian:

$$\begin{aligned} &-\log p_{\boldsymbol{X}|Y}(\boldsymbol{x}|k) \\ &= -\log \left(\frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}_k|}} \exp \left\{ -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k) \right\} \right) \\ &= \underbrace{\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k)}_{\text{contains } \boldsymbol{x}} \underbrace{-\frac{n}{2} \log 2\pi - \frac{1}{2} \log |\boldsymbol{\Sigma}_k|}_{\text{no } \boldsymbol{x}}. \end{aligned}$$

- $(\mathbf{x} \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu}) \geq 0$, always.
- $\sqrt{(\mathbf{x} \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})}$ is called Mahalanobis distance.

Outline

Generative Approaches

- Lecture 9 Bayesian Decision Rules
- Lecture 10 Evaluating Performance
- Lecture 11 Bayesian Parameter Estimation
- Lecture 12 Bayesian Prior
- Lecture 13 Connecting Bayesian and Linear Regression

Today's Lecture

- Review of High-Dimensional Gaussian
 - Likelihood and prior
 - Gaussian PDF
- Basic Principle
 - Making the Bayesian decision
 - 1D Illustration
- The Three Cases
 - $\Sigma_i = \sigma^2 I$
 - $\Sigma_i = \Sigma$ (Next Lecture)
 - General Σ_i (Next Lecture)

Interaction between Likelihood and Prior

According to Bayes Theorem, we have that

$$p_{Y|X}(i|x) = \frac{p_{X|Y}(x|i)p_Y(i)}{p_X(x)}$$

- Posterior: **After** you have seen **x**
- Likelihood: Before you see x
- Prior: You subjective believe of class label
- You cannot just use $p_Y(i)$; Otherwise you are not using data
- You cannot just use $p_{X|Y}(x|i)$; Otherwise you cannot explain "Y given X"

Making the Bayesian Decision

Which class is more likely?

$$i^* = \underset{i}{\operatorname{argmax}} \ p_{Y|X}(i|x)$$

$$= \underset{i}{\operatorname{argmax}} \ \frac{p_{X|Y}(x|i)p_{Y}(i)}{p_{X}(x)}$$

$$= \underset{i}{\operatorname{argmax}} \ \log p_{X|Y}(x|i) + \log \pi_i - \log p_{X}(x)$$

$$= \underset{i}{\operatorname{argmax}} \ \log p_{X|Y}(x|i) + \log \pi_i - \log p_{X}(x)$$
remove

- Solution = the most likely class according to posterior
- This involves a likelihood which depends on the model you choose
- This involves a prior term which is subjective

Let us Plug-in Multi-dimensional Gaussian

Recall d-dimensional Gaussian.

$$p_{\boldsymbol{X} \mid Y}(\boldsymbol{x} \mid i) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}_i|}} \exp \left\{ -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i) \right\}.$$

Plug this into the discriminant function

$$i^* = \underset{i}{\operatorname{argmax}} \log p_{\mathbf{X} \mid Y}(\mathbf{x} \mid i) + \log \pi_i$$

$$= \underset{i}{\operatorname{argmax}} -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \log(2\pi) - \frac{1}{2} \log |\mathbf{\Sigma}_i| + \log \pi_i$$

$$= \underset{i}{\operatorname{argmax}} \underbrace{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)}_{\text{depend on } \mathbf{x}} - \underbrace{\frac{1}{2} \log |\mathbf{\Sigma}_i| + \log \pi_i}_{\text{does not depend on } \mathbf{x}}.$$

Special Case: 1D; Two classes

The decision rule is

$$i^* = \underset{i}{\operatorname{argmax}} \underbrace{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)}_{\text{depend on } \mathbf{x}} \underbrace{-\frac{1}{2} \log |\boldsymbol{\Sigma}_i| + \log \pi_i}_{\text{does not depend on } \mathbf{x}}.$$

Substitute $\Sigma_i = \sigma^2$, and $\mu_i = \mu_i$. Do two classes.

$$\begin{array}{ll} -\frac{(\mathbf{x}-\mu_1)^2}{2\sigma^2} - \log \sigma + \log \pi_1 & \gtrless_{\mathcal{C}_2}^{\mathcal{C}_1} & -\frac{(\mathbf{x}-\mu_2)^2}{2\sigma^2} - \log \sigma + \log \pi_2 \\ -\frac{(\mathbf{x}-\mu_1)^2}{2\sigma^2} - \log \sigma + \log \pi_1 & \gtrless_{\mathcal{C}_2}^{\mathcal{C}_1} & -\frac{(\mathbf{x}-\mu_2)^2}{2\sigma^2} - \log \sigma + \log \pi_2 \\ & \vdots \end{array}$$

$$\mathbf{v} \geq^{\mathcal{C}_1}$$

$$x \geqslant_{C_2}^{C_1} \frac{\mu_1 - \mu_2}{2} - \frac{\sigma^2}{\mu_1 - \mu_2} \log \frac{\pi_1}{\pi_2}.$$

does not depend on x

Connecting to Linear Discriminant Function

Recall: A hypothesis function is

$$h(\mathbf{x}) = \begin{cases} 1, & \text{if } g(\mathbf{x}) > 0 \\ 0, & \text{if } g(\mathbf{x}) < 0 \\ \text{either,} & \text{if } g(\mathbf{x}) = 0 \end{cases}$$

If there are only two classes, then we can define

$$g(\mathbf{x}) = g_i(\mathbf{x}) - g_j(\mathbf{x}).$$

where the i-th discriminant function is

$$g_i(\mathbf{x}) = \log p_{\mathbf{X}|Y}(\mathbf{x}|i) + \log \pi_i.$$

- Class i if $g(\mathbf{x}) > 0 \iff g_i(\mathbf{x}) > g_j(\mathbf{x})$
- Class j if $g(\mathbf{x}) < 0 \iff g_i(\mathbf{x}) < g_j(\mathbf{x})$
- Either if $g(\mathbf{x}) = 0 \iff g_i(\mathbf{x}) = g_j(\mathbf{x})$

Outline

Generative Approaches

- Lecture 9 Bayesian Decision Rules
- Lecture 10 Evaluating Performance
- Lecture 11 Bayesian Parameter Estimation
- Lecture 12 Bayesian Prior
- Lecture 13 Connecting Bayesian and Linear Regression

Today's Lecture

- Review of High-Dimensional Gaussian
 - Likelihood and prior
 - Gaussian PDF
- Gaussiali FDF
- Basic Principle
 - Making the Bayesian decision
 - 1D Illustration
- The Three Cases
 - $\Sigma_i = \sigma^2 I$
 - $\Sigma_i = \Sigma$ (Next Lecture)
 - General Σ_i (Next Lecture)

Three Cases of Gaussians

Discriminant function of Gaussian:

$$g_i(\mathbf{x}) = \log p_{\mathbf{X}|Y}(\mathbf{x}|i) + \log \pi_i$$

= $-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \log |\mathbf{\Sigma}_i| + \log \pi_i$.

- $\Sigma_i = \sigma^2 I$
 - All Gaussians have the same covariance matrix
 - The covariance matrix is diagonal and same variance
- $\bullet \ \Sigma_i = \Sigma$
 - All Gaussians have the same covariance matrix
 - The covariance matrix can be anything
- arbitrary Σ_i
 - Any positive semi-definite covariance matrix

Case 1: $\Sigma_i = \sigma^2 I$

Put $\Sigma_i = \Sigma$:

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2}\log|\mathbf{\Sigma}| + \log \pi_i.$$

Let us do some simplification:

$$g_{i}(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i}) - \frac{1}{2} \log |\mathbf{\Sigma}| + \log \pi_{i}$$

$$= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{i}) + \log \pi_{i}$$

$$= -\frac{1}{2\sigma^{2}} ||\mathbf{x} - \boldsymbol{\mu}_{i}||^{2} + \log \pi_{i}$$

$$= -\frac{1}{2\sigma^{2}} \left(||\mathbf{x}||^{2} - 2\mathbf{x}^{T} \boldsymbol{\mu}_{i} + ||\boldsymbol{\mu}_{i}||^{2} \right) + \log \pi_{i}$$

$$= -\frac{1}{2\sigma^{2}} \left(||\mathbf{x}||^{2} - 2\mathbf{x}^{T} \boldsymbol{\mu}_{i} + ||\boldsymbol{\mu}_{i}||^{2} \right) + \log \pi_{i}$$

$$= \left(\frac{\boldsymbol{\mu}_{i}}{\sigma^{2}} \right)^{T} \mathbf{x} - \left(\frac{||\boldsymbol{\mu}_{i}||^{2}}{2\sigma^{2}} - \log \pi_{i} \right).$$

Case 1: $\Sigma_i = \sigma^2 I$

$$g_i(\mathbf{x}) = \underbrace{\left(\frac{\boldsymbol{\mu}_i}{\sigma^2}\right)^T}_{\mathbf{w}_i} \mathbf{x} - \underbrace{\left(\frac{\|\boldsymbol{\mu}_i\|^2}{2\sigma^2} - \log \pi_i\right)}_{\mathbf{w}_{i0}}$$
$$= \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

So if the *i*-th and the *j*-th discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$

 $g_j(\mathbf{x}) = \mathbf{w}_j^T \mathbf{x} + w_{j0},$

then,

$$g(\mathbf{x}) = g_i(\mathbf{x}) - g_j(\mathbf{x})$$

$$= \underbrace{\left(\frac{\boldsymbol{\mu}_i - \boldsymbol{\mu}_j}{\sigma^2}\right)^T}_{\mathbf{x}_i - \mathbf{y}_i} \mathbf{x} + \underbrace{\left(-\frac{\|\boldsymbol{\mu}_i\|^2 - \|\boldsymbol{\mu}_j\|^2}{2\sigma^2} + \log \frac{\pi_i}{\pi_j}\right)}_{\mathbf{y}_i - \mathbf{y}_i}.$$

Case 1: $\Sigma_i = \sigma^2 I$

Theorem

If $\Sigma_i = \sigma^2 I$, then the separating hyperplane is given by

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 = 0,$$

where

$$\mathbf{w} = \frac{\mu_i - \mu_j}{\sigma^2}, \quad \text{and} \quad w_0 = -\frac{\|\mu_i\|^2 - \|\mu_j\|^2}{2\sigma^2} + \log\frac{\pi_i}{\pi_i}.$$

- You tell me the two Gaussians: μ_i , μ_i , π_i , π_i , σ
- I return you a separating hyperplane

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

• This is the best possible hyperplane according to posterior distribution

Case 1: $\Sigma_i = \sigma^2 I$: Geometry

Can we write $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ in terms of

$$g(\mathbf{x}) = \mathbf{w}^T(\mathbf{x} - \mathbf{x}_0).$$

Not too difficult:

$$g(\mathbf{x}) = \left(\frac{\mu_i - \mu_j}{\sigma^2}\right)^T \mathbf{x} - \left(\frac{\|\mu_i\|^2}{2\sigma^2} - \frac{\|\mu_j\|^2}{2\sigma^2}\right) + \log\frac{\pi_i}{\pi_j}$$
$$= \left(\frac{\mu_i - \mu_j}{\sigma^2}\right)^T \left[\mathbf{x} - \underbrace{\frac{\mu_i + \mu_j}{2} + \sigma^2 \left(\log\frac{\pi_i}{\pi_j}\right) \frac{\mu_i - \mu_j}{\|\mu_i - \mu_j\|^2}}_{\mathbf{x}_0}\right]$$

Therefore, we have

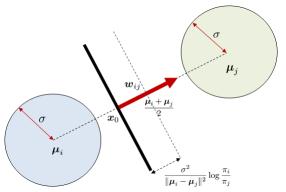
$$\mathbf{w} = rac{oldsymbol{\mu}_i - oldsymbol{\mu}_j}{\sigma^2}, \qquad ext{and} \qquad \mathbf{x}_0 = rac{oldsymbol{\mu}_i + oldsymbol{\mu}_j}{2} - rac{\sigma^2}{\|oldsymbol{\mu}_i - oldsymbol{\mu}_i\|^2} \left(\log rac{\pi_i}{\pi_i}
ight) (oldsymbol{\mu}_i - oldsymbol{\mu}_j),$$

Case 1: $\Sigma_i = \sigma^2 I$: Geometry

$$\mathbf{w} = \frac{\mu_i - \mu_j}{\sigma^2}$$
, and $\mathbf{x}_0 = \frac{\mu_i + \mu_j}{2} - \frac{\sigma^2}{\|\mu_i - \mu_j\|^2} \left(\log \frac{\pi_i}{\pi_j}\right) (\mu_i - \mu_j)$,

Interpreting Results

Here are the geometric interpretations:



- Normal vector is $\mathbf{w} = \frac{\mu_i \mu_j}{\sigma^2}$. It points from one center to another.
- Midpoint is $x_0 = \frac{\mu_i + \mu_j}{2}$
- The prior creates an offset. Offset direction is also $\mu_i \mu_j$. If $\pi_i = \pi_i = 1/2$, then $\log(\pi_1/\pi_i) = 0$.

Reading List

High Dimensional Gaussian

- Bishop, Pattern Recognition and Machine Learning, Chapter 2.3
- Stanford CS 229 Tutorial on Gaussian
 http://cs229.stanford.edu/section/gaussians.pdf

Bayesian Decision Rule

- Bishop, Pattern Recognition and Machine Learning, Chapter 4.1
- Duda, Hart and Stork's Pattern Classification, Chapter 2.1, 2.2, 2.6
- Stanford CS 229 Generative Algorithms
 http://cs229.stanford.edu/notes/cs229-notes2.pdf
- UCSD ECE 271A, Lecture 4 and 5
 http://www.svcl.ucsd.edu/courses/ece271A/ece271A.htm