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@ In linear discriminant analysis (LDA), there are generally two types of
approaches
o Generative approach: Estimate model, then define the classifier

o Discriminative approach: Directly define the classifier
2/25



Generative Approach
Goal: Construct a discriminant function g(x) = w ' x + wy from the data.
Suppose there are two classes C; and G.

°
@ Each class is modeled as a Gaussian.
@ We are going to utilize two concepts:
°

likelihood function

px|y (x]i) = N(x | p;, X;)

(]

prior distribution
py (i) = m;
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Generative Approaches
Lecture 9 Bayesian Decision Rules
Lecture 10 Evaluating Performance
Lecture 11 Bayesian Parameter Estimation
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Today’s Lecture
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o Likelihood and prior
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@ Basic Principle
e Making the Bayesian decision
o 1D lllustration
@ The Three Cases
o Z,- = 021
e X, = X (Next Lecture)
e General X; (Next Lecture)
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High-dimensional Gaussian
An d-dimensional Gaussian has a PDF

1 1 Te—1/
PX(X)—WEXP{—E(X—N) I (x N)}7

where d denotes the dimensionality of the vector x.

@ The mean vector pu is

E[X1]
p=E[X]=| :
E[X,]
@ The covariance matrix X is
Var[Xi] Cov(X1, X2) ... Cov(Xi, Xq)
T COV()(Q7 X1) Var[XQ] P COV(XQ, Xd)
T = E[(X - p)(X — )] = | ; ) ;
COV(Xd, Xl) COV()(N7 XQ) e Var[Xd]

@ X is always positive semi-definite. (Why?)
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Special Case: Diagonal Covariance

@ Suppose that X; and X; are independent for all i # ;.
@ This implies Cov(X;, X;) =0
Simplify X

Y —

Then, the exponential is
Te-1 e (= pi)?
(=) E x - ) = 0P

@ And hence, the PDF is
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Visualization

@ Generate 1000 random samples from a 2D Gaussian

o u= {8} and X = [06?35 013}
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Conditional Gaussian

e Data {x1,...,xn}.
e Class Y € {1,2,...,K}.
o Likelihood:

px|y(x|k) = Probability of getting X given Y
@ Prior:

py (k) = Probability of getting Y

o Posterior:

py|x(k|x) = Probability of getting Y given X
o Related by

(K|x) = Pxjy(x[K)py (k) _ pxjy(x[k)py (k)
PYIx px(x) 5 Pxiy (xK)py (K)
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Example

@ Two Gaussian N'(x | gy, X1) and N(x | p,, X2).
Prior probability of getting a class is

py(l) = 71 and py(2) = T2.

@ The likelihood term is
Pxy(x|k) = N(x | py, Xk)

1 1 Te—1
:WGXP{—E(X—MH X, (X—Mk)}

@ The posterior is
px|v(x|k)py (k)
PX(X)
T
dlz exp {—5(x — ) " (x — )}k

pyix(k|x) =

K
kz,l\/m exp { =5 (x — ) "I (x — ) } - e

9/25



-
Negative Log-Likelihood

Negative Log-Likelihood for Gaussian:

— log px|v(x|k)

=—lo ;ex —lx— Ty (x—
= |g< N p{ 5 (¢ = ) "B m)})

1 _ n
= E(X - Mk)TZkl(X ) —§|

contains x no x

1
og2m — 5 log [X].

o (x — )X Yx — ) >0, always.
° \/(x — p)TZ"Y(x — p) is called Mahalanobis distance.
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Interaction between Likelihood and Prior

According to Bayes Theorem, we have that

px|y (x]1)py (/)

py‘x(l'|X) = PX(X)

Posterior: After you have seen x

Likelihood: Before you see x

Prior: You subjective believe of class label

You cannot just use py(i); Otherwise you are not using data

You cannot just use px|y(x|i); Otherwise you cannot explain Y
given X"
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-
Making the Bayesian Decision

Which class is more likely?
i* = argmax py|x(i|x)
i
pxiy (xI1)py (1)

=argmax ———————=
i px(x)

= argmax logpx | y(x|i) + logm; — logpx (x)
1

, remove
= argmax log px |y (x|i) +logm; — lo X
i

@ Solution = the most likely class according to posterior
@ This involves a likelihood which depends on the model you choose

@ This involves a prior term which is subjective
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Let us Plug-in Multi-dimensional Gaussian

Recall d-dimensional Gaussian.

30 i) TE k- ) |

] 1
PX|Y(X|’) = MGXP{—2

Plug this into the discriminant function
i* = argmax log px |y (x| i)+ logm;
i

1 d 1
= argmax _E(X - Ni)TZ,'_l(X —pi)— 5 ™) — > log || + log 7

1

1 _ 1
= argmax —E(X — 1) TE T (x - ) —5 log X + log ;.
1

deper;a on x does not crgpend on x
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Special Case: 1D; Two classes

The decision rule is

1
i* = argmax —E(x—u,)TZf (x — ) — Iog|Z | + log ;.

i

depend on x does not depend on x

Substitute X; = 02, and p; = p1;. Do two classes.

L;’“)z log o + log 1 251 —7(X;:§)2 — log o + log >

— Lol 1og5 T logm zgl — Gl o5 log

2
>Cl H1 — p2 o g 1

X <CQ 2

log
H1 — M2 ™2

does not depend on x
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Connecting to Linear Discriminant Function

Recall: A hypothesis function is

1, if g(x)>0
h(x) =<0, if g(x)<0
either, if g(x)=0

If there are only two classes, then we can define
g(x) = &i(x) — gj(x)-

where the /-th discriminant function is

gi(x) = log px|y(x|i) + log ;.

o Class i if g(x) >0 < gi(x) > gj(x)
o Class j if g(x) <0 <= gi(x) < gj(x)
o Either if g(x) =0 < gi(x) = gj(x)
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Three Cases of Gaussians

Discriminant function of Gaussian:
gi(x) = log px|y(x|i) + log 7

1 B 1
= —E(X — ) TE (- ) - 5 log || + log 7;.

o X; =02l
o All Gaussians have the same covariance matrix
e The covariance matrix is diagonal and same variance

o Z,~ =X
o All Gaussians have the same covariance matrix
e The covariance matrix can be anything

@ arbitrary X ;
o Any positive semi-definite covariance matrix
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.
Case 1: X; = o2l
Put ; = X:
gi(x) = —5(x — p;) 77 (x — p;) — 7 log |Z| + log ;.

2 2
Let us do some simplification:

gi(x) = —3 0~ ) TEHx ) — S log 5] + logm
= —%(X — ) TEH(x — ) + log i
= —llx— il +logm

—2i (12— 2xT i + s + log

oy (el = 2Ty - 1) +log

(T i
—<;2') < (o —toam).
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|
Case 1: X; = o2l

2
5 = (43) "x - (1o ~ o)
~——

~
wio

wi
= w,-Tx + wio
So if the i-th and the j-th discriminant functions are
gi(x) = w/ x + wj
gi(x) = w/ x +wp,
then,
8(x) = &i(x) — gj(x)

T 2 2
i — 1 [l = [l i
= —————— +log —
( 2 > x + ( 552 + log s

——

Wi—w
b Wio—Wjo
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-
Case 1: X; = o2l
Theorem
If £; = 0?1, then the separating hyperplane is given by
g(x)=w'x+w =0,
where

. 2— . 2
g PNl

U
o2 2072 '

Tj

@ You tell me the two Gaussians: p;, p;, i, mj, o
@ | return you a separating hyperplane

g(x)=w'x+w

@ This is the best possible hyperplane according to posterior distribution
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-
Case 1: X; = 02I: Geometry

Can we write g(x) = w'x + wp in terms of

g(x) = w'(x - xo).

Not too difficult:

K — l‘l’_/ ||HJ,H2 HIJ’J”2
- _ log
gx) = < o2 ) X ( 202 2007 | F 7TJ

(u, w) [x_u,-ﬂuj (log > u-fuj}
o? 2 ki — )2

X0

Therefore, we have

Mty o?

I o o
g2

(Io ”") ( )
- g — Hi—Hj),
2 lpe; — Hj”2 j !



-
Case 1: X; = 02I: Geometry

i — Ky
2

, and Xo =

w —=

N R o? (

-
log =~ —
ogﬁ_)(u, 1),

2 lpe; — Hj”z j
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Interpreting Results

Here are the geometric interpretations:

E log —

g = pe; ™

BiZP It points from one center to another.

@ Normal vector is w =

@ Midpoint is xg = %

@ The prior creates an offset. Offset direction is also p; — p;. If
M =mj = 1/2, then |og(7r1/7rj) =0.
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-
Reading List

High Dimensional Gaussian
@ Bishop, Pattern Recognition and Machine Learning, Chapter 2.3

e Stanford CS 229 Tutorial on Gaussian
http://cs229.stanford.edu/section/gaussians.pdf

Bayesian Decision Rule
@ Bishop, Pattern Recognition and Machine Learning, Chapter 4.1
@ Duda, Hart and Stork’s Pattern Classification, Chapter 2.1, 2.2, 2.6

o Stanford CS 229 Generative Algorithms
http://cs229.stanford.edu/notes/cs229-notes2. pdf

@ UCSD ECE 271A, Lecture 4 and 5
http://www.svcl.ucsd.edu/courses/ece271A/ece271A.htm
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