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Overview

In linear discriminant analysis (LDA), there are generally two types of
approaches

Generative approach: Estimate model, then define the classifier

Discriminative approach: Directly define the classifier
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Generative Approach

Goal: Construct a discriminant function g(x) = wTx + w0 from the data.

Suppose there are two classes C1 and C2.

Each class is modeled as a Gaussian.

We are going to utilize two concepts:

likelihood function

pX |Y (x |i) = N (x | µi ,Σi )

prior distribution
pY (i) = πi
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High-dimensional Gaussian

An d-dimensional Gaussian has a PDF

pX (x) =
1√

(2π)d |Σ|
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
,

where d denotes the dimensionality of the vector x .

The mean vector µ is

µ = E[X ] =

E[X1]
...

E[Xd ]


The covariance matrix Σ is

Σ = E[(X − µ)(X − µ)T ] =


Var[X1] Cov(X1,X2) . . . Cov(X1,Xd)

Cov(X2,X1) Var[X2] . . . Cov(X2,Xd)
...

...
. . .

...
Cov(Xd ,X1) Cov(XN ,X2) . . . Var[Xd ]


Σ is always positive semi-definite. (Why?)
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Special Case: Diagonal Covariance

Suppose that Xi and Xj are independent for all i 6= j .

This implies Cov(Xi ,Xj) = 0

Simplify Σ

Σ =

σ
2
1 . . . 0
...

. . .
...

0 . . . σ2d

 ,
Then, the exponential is

(x − µ)TΣ−1(x − µ) =
n∑

i=1

(xi − µi )2

σ2i
.

And hence, the PDF is

pX (x) =
n∏

i=1

1√
2πσ2i

exp

{
−(xi − µi )2

2σ2i

}
.
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Visualization

Generate 1000 random samples from a 2D Gaussian

µ =

[
0
0

]
, and Σ =

[
0.25 0.3
0.3 1

]
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Conditional Gaussian

Data {x1, . . . , xN}.
Class Y ∈ {1, 2, . . . ,K}.
Likelihood:

pX |Y (x |k) = Probability of getting X given Y

Prior:
pY (k) = Probability of getting Y

Posterior:

pY |X (k |x) = Probability of getting Y given X

Related by

pY |X (k |x) =
pX |Y (x |k)pY (k)

pX (x)
=

pX |Y (x |k)pY (k)∑
k pX |Y (x |k)pY (k)
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Example

Two Gaussian N (x | µ1,Σ1) and N (x | µ2,Σ2).

Prior probability of getting a class is

pY (1) = π1 and pY (2) = π2.

The likelihood term is

pX |Y (x |k) = N (x | µk ,Σk)

=
1√

(2π)d |Σk |
exp

{
−1

2
(x − µk)TΣ−1

k (x − µk)

}
The posterior is

pY |X (k|x) =
pX |Y (x |k)pY (k)

pX (x)

=

1√
(2π)d |Σk |

exp
{
− 1

2
(x − µk)TΣ−1

k (x − µk)
}
· πk

K∑
k=1

1√
(2π)d |Σk |

exp
{
− 1

2
(x − µk)TΣ−1

k (x − µk)
}
· πk
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Negative Log-Likelihood

Negative Log-Likelihood for Gaussian:

− log pX |Y (x |k)

= − log

(
1√

(2π)d |Σk |
exp

{
−1

2
(x − µk)TΣ−1k (x − µk)

})
=

1

2
(x − µk)TΣ−1k (x − µk)︸ ︷︷ ︸

contains x

−n

2
log 2π − 1

2
log |Σk |︸ ︷︷ ︸

no x

.

(x − µ)TΣ−1(x − µ) ≥ 0, always.√
(x − µ)TΣ−1(x − µ) is called Mahalanobis distance.
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Interaction between Likelihood and Prior

According to Bayes Theorem, we have that

pY |X (i |x) =
pX |Y (x |i)pY (i)

pX (x)

Posterior: After you have seen x
Likelihood: Before you see x
Prior: You subjective believe of class label

You cannot just use pY (i); Otherwise you are not using data

You cannot just use pX |Y (x |i); Otherwise you cannot explain “Y
given X”
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Making the Bayesian Decision

Which class is more likely?

i∗ = argmax
i

pY |X (i |x)

= argmax
i

pX |Y (x |i)pY (i)

pX (x)

= argmax
i

logpX |Y (x |i) + logπi − logpX (x)

= argmax
i

log pX |Y (x |i) + log πi −���
��: remove

log pX (x)

Solution = the most likely class according to posterior

This involves a likelihood which depends on the model you choose

This involves a prior term which is subjective
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Let us Plug-in Multi-dimensional Gaussian

Recall d-dimensional Gaussian.

pX |Y (x | i) =
1√

(2π)d |Σi |
exp

{
−1

2
(x − µi )

TΣ−1i (x − µi )

}
.

Plug this into the discriminant function

i∗ = argmax
i

log pX |Y (x | i) + log πi

= argmax
i

−1

2
(x − µi )

TΣ−1i (x − µi )−
��

�
��
�*d

2
log(2π)− 1

2
log |Σi |+ log πi

= argmax
i

−1

2
(x − µi )

TΣ−1i (x − µi )︸ ︷︷ ︸
depend on x

−1

2
log |Σi |+ log πi .︸ ︷︷ ︸

does not depend on x
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Special Case: 1D; Two classes

The decision rule is

i∗ = argmax
i

−1

2
(x − µi )

TΣ−1i (x − µi )︸ ︷︷ ︸
depend on x

−1

2
log |Σi |+ log πi .︸ ︷︷ ︸

does not depend on x

Substitute Σi = σ2, and µi = µi . Do two classes.

− (x−µ1)2

2σ2 − log σ + log π1 ≷C1C2 −
(x−µ2)2

2σ2 − log σ + log π2

− (x−µ1)2

2σ2 −��
�*log σ + log π1 ≷C1C2 −

(x−µ2)2

2σ2 −��
�*log σ + log π2

...

x ≷C1C2
µ1 − µ2

2
− σ2

µ1 − µ2
log

π1
π2︸ ︷︷ ︸

does not depend on x

.
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Connecting to Linear Discriminant Function

Recall: A hypothesis function is

h(x) =


1, if g(x) > 0

0, if g(x) < 0

either, if g(x) = 0

If there are only two classes, then we can define

g(x) = gi (x)− gj(x).

where the i-th discriminant function is

gi (x) = log pX |Y (x |i) + log πi .

Class i if g(x) > 0 ⇐⇒ gi (x) > gj(x)

Class j if g(x) < 0 ⇐⇒ gi (x) < gj(x)

Either if g(x) = 0 ⇐⇒ gi (x) = gj(x)
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Three Cases of Gaussians

Discriminant function of Gaussian:

gi (x) = log pX |Y (x |i) + log πi

= −1

2
(x − µi )

TΣ−1i (x − µi )−
1

2
log |Σi |+ log πi .

Σi = σ2I
All Gaussians have the same covariance matrix
The covariance matrix is diagonal and same variance

Σi = Σ
All Gaussians have the same covariance matrix
The covariance matrix can be anything

arbitrary Σi

Any positive semi-definite covariance matrix
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Case 1: Σi = σ2I

Put Σi = Σ:

gi (x) = −1

2
(x − µi )

TΣ−1(x − µi )−
1

2
log |Σ|+ log πi .

Let us do some simplification:

gi (x) = −1

2
(x − µi )

TΣ−1(x − µi )−��
��
�1

2
log |Σ|+ log πi

= −1

2
(x − µi )

TΣ−1(x − µi ) + log πi

= − 1

2σ2
‖x − µi‖2 + log πi

= − 1

2σ2

(
‖x‖2 − 2xTµi + ‖µi‖2

)
+ log πi

= − 1

2σ2

(
�
��‖x‖2 − 2xTµi + ‖µi‖2

)
+ log πi

=
(µi

σ2

)T
x −

(
‖µi‖2

2σ2
− log πi

)
.
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Case 1: Σi = σ2I

gi (x) =
(µi

σ2

)
︸ ︷︷ ︸

w i

T
x −

(
‖µi‖2

2σ2
− log πi

)
︸ ︷︷ ︸

wi0

= wT
i x + wi0

So if the i-th and the j-th discriminant functions are

gi (x) = wT
i x + wi0

gj(x) = wT
j x + wj0,

then,

g(x) = gi (x)− gj(x)

=

(
µi − µj

σ2

)T

︸ ︷︷ ︸
w i−w j

x +

(
−
‖µi‖2 − ‖µj‖2

2σ2
+ log

πi
πj

)
︸ ︷︷ ︸

wi0−wj0

.
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Case 1: Σi = σ2I

Theorem

If Σi = σ2I , then the separating hyperplane is given by

g(x) = wTx + w0 = 0,

where

w =
µi − µj

σ2
, and w0 = −

‖µi‖2 − ‖µj‖2

2σ2
+ log

πi
πj
.

You tell me the two Gaussians: µi , µj , πi , πj , σ

I return you a separating hyperplane

g(x) = wTx + w0

This is the best possible hyperplane according to posterior distribution
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Case 1: Σi = σ2I : Geometry

Can we write g(x) = wTx + w0 in terms of

g(x) = wT (x − x0).

Not too difficult:

g(x) =

(
µi − µj

σ2

)T

x −

(
‖µi‖2

2σ2
−
‖µj‖2

2σ2

)
+ log

πi
πj

=

(
µi − µj

σ2

)T [
x −

µi + µj

2
+ σ2

(
log

πi
πj

)
µi − µj

‖µi − µj‖2︸ ︷︷ ︸
x0

]

Therefore, we have

w =
µi − µj

σ2
, and x0 =

µi + µj

2
− σ2

‖µi − µj‖2

(
log

πi
πj

)
(µi−µj),

22 / 25



c©Stanley Chan 2020. All Rights Reserved.

Case 1: Σi = σ2I : Geometry

w =
µi − µj

σ2
, and x0 =

µi + µj

2
− σ2

‖µi − µj‖2

(
log

πi
πj

)
(µi−µj),
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Interpreting Results

Here are the geometric interpretations:

Normal vector is w =
µi−µj

σ2 . It points from one center to another.

Midpoint is x0 =
µi+µj

2
The prior creates an offset. Offset direction is also µi − µj . If
πi = πj = 1/2, then log(π1/πj) = 0.
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Reading List

High Dimensional Gaussian

Bishop, Pattern Recognition and Machine Learning, Chapter 2.3

Stanford CS 229 Tutorial on Gaussian
http://cs229.stanford.edu/section/gaussians.pdf

Bayesian Decision Rule

Bishop, Pattern Recognition and Machine Learning, Chapter 4.1

Duda, Hart and Stork’s Pattern Classification, Chapter 2.1, 2.2, 2.6

Stanford CS 229 Generative Algorithms
http://cs229.stanford.edu/notes/cs229-notes2.pdf

UCSD ECE 271A, Lecture 4 and 5
http://www.svcl.ucsd.edu/courses/ece271A/ece271A.htm
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