ECE 595: Machine Learning I Lecture 07 Feature Analysis via PCA

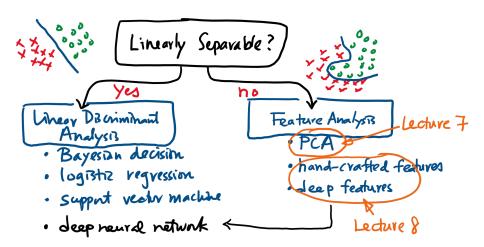
Spring 2020

Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Overview

Supervised Learning for Classification



Outline

Feature Analysis

- Lecture 7 Principal Component Analysis (PCA)
- Lecture 8 Hand-Crafted and Deep Features

This Lecture

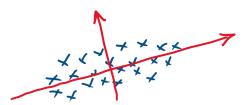
- PCA
 - Low-dimensional Representation
 - Geometric Interpretation
 - Eigen-Face Problem
- Kernel-PCA
 - Adding kernels to PCA
 - Algorithm
 - Examples

Low-Dimensional Representation

- Consider a set of data point $\{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}$
- These data points are living in a **high dimensional space** $\mathbf{x}^{(n)} \in \mathbb{R}^d$
- Find a **low dimensional representation** in \mathbb{R}^p where p < d
- ullet Equivalent to finding the **principal components** $oldsymbol{v}_1,\ldots,oldsymbol{v}_p$ such that

$$\mathbf{x}^{(n)} pprox \sum_{i=1}^{p} \alpha_i^{(n)} \mathbf{v}_i$$

ullet Then every $oldsymbol{x}^{(n)} \in \mathbb{R}^d$ can be represented using $oldsymbol{lpha}^{(n)} \in \mathbb{R}^p$.



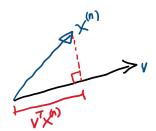
One Sample Analysis

- Consider a simpler problem: One data point x and one direction v.
- We want to find a direction $\hat{\mathbf{v}}$ and a scalar $\hat{\alpha}$ such that

$$(\widehat{\mathbf{v}}, \widehat{\alpha}) = \underset{\|\mathbf{v}\|_2 = 1, \alpha}{\operatorname{argmin}} \left\| \begin{bmatrix} 1 \\ \mathbf{x} \\ 1 \end{bmatrix} - \alpha \begin{bmatrix} 1 \\ \mathbf{v} \\ 1 \end{bmatrix} \right\|^2$$

• First assume \mathbf{v} is available. Then take derivative w.r.t. α :

$$2\mathbf{v}^T(\mathbf{x} - \alpha \mathbf{v}) = 0 \qquad \Rightarrow \qquad \alpha = \mathbf{v}^T \mathbf{x}.$$



One Sample Analysis

- Substitute $\alpha = \mathbf{x}^T \mathbf{v}$ into the optimization
- Then the optimization becomes

$$\begin{aligned} \underset{\|\mathbf{v}\|_2=1}{\operatorname{argmin}} \quad &\|\mathbf{x} - \alpha \mathbf{v}\|^2 = \underset{\|\mathbf{v}\|_2=1}{\operatorname{argmin}} \quad \left\{ \mathbf{x}^T \mathbf{x} - 2\alpha \mathbf{x}^T \mathbf{v} + \alpha^2 \mathbf{v}^T \mathbf{v} \right\} \\ &= \underset{\|\mathbf{v}\|_2=1}{\operatorname{argmin}} \quad \left\{ -2\alpha \mathbf{x}^T \mathbf{v} + \alpha^2 \right\} \\ &= \underset{\|\mathbf{v}\|_2=1}{\operatorname{argmin}} \quad \left\{ -2(\mathbf{x}^T \mathbf{v}) \mathbf{x}^T \mathbf{v} + (\mathbf{x}^T \mathbf{v})^2 \right\} \\ &= \underset{\|\mathbf{v}\|_2=1}{\operatorname{argmax}} \quad \left\{ \mathbf{v}^T \mathbf{x} \mathbf{x}^T \mathbf{v} \right\} \end{aligned}$$

Take expectation on both sides:

$$\underset{\|\boldsymbol{v}\|_2=1}{\operatorname{argmin}} \ \ \underline{\mathbb{E}}_{\boldsymbol{x}} \|\boldsymbol{x} - \alpha \boldsymbol{v}\|^2 = \underset{\|\boldsymbol{v}\|_2=1}{\operatorname{argmax}} \ \boldsymbol{v}^T \underline{\mathbb{E}}_{\boldsymbol{x}} \bigg\{ \boldsymbol{x} \boldsymbol{x}^T \bigg\} \boldsymbol{v}$$

Eigenvalue Problem

- Let $\Sigma \stackrel{\text{def}}{=} \mathbb{E}[xx^T]$.
- Then the optimization problem is

$$\underset{\|\mathbf{v}\|_2=1}{\operatorname{argmax}} \mathbf{v}^T \mathbf{\Sigma} \mathbf{v}.$$

 \bullet The solution to this problem is the eigenvalue and eigenvectors of $\Sigma.$

Theorem

Let Σ be a $d \times d$ matrix with eigen-decomposition $\Sigma = USU^T$. Then, the optimization

$$\widehat{\mathbf{v}} = \underset{\|\mathbf{v}\|_2=1}{\operatorname{argmax}} \mathbf{v}^T \mathbf{\Sigma} \mathbf{v}.$$

has a solution $\hat{\mathbf{v}} = \mathbf{u}_i$ for any $i = 1, \dots, d$.

Proof: See Appendix.

Finite Samples

 \bullet When there are N training samples, the optimization is

$$\underset{\|\mathbf{v}\|_{2}=1}{\operatorname{argmin}} \ \ \underbrace{\frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}^{(n)} - \boldsymbol{\alpha}^{(n)} \mathbf{v}\|^{2}}_{=\mathbb{E}[\|\mathbf{x} - \boldsymbol{\alpha} \mathbf{v}\|^{2}], \ N \to \infty} = \underset{\|\mathbf{v}\|_{2}=1}{\operatorname{argmax}} \ \mathbf{v}^{T} \underbrace{\left\{ \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} (\mathbf{x}^{(n)})^{T} \right\}}_{=\mathbb{E}[\mathbf{x} \mathbf{x}^{T}], \ N \to \infty} \mathbf{v}^{T} \underbrace{\left\{ \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} (\mathbf{x}^{(n)})^{T} \right\}}_{=\mathbb{E}[\mathbf{x} \mathbf{x}^{T}], \ N \to \infty} \mathbf{v}^{T} \underbrace{\left\{ \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} (\mathbf{x}^{(n)})^{T} \right\}}_{=\mathbb{E}[\mathbf{x} \mathbf{x}^{T}], \ N \to \infty} \mathbf{v}^{T} \underbrace{\left\{ \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} (\mathbf{x}^{(n)})^{T} \right\}}_{=\mathbb{E}[\mathbf{x} \mathbf{x}^{T}], \ N \to \infty} \mathbf{v}^{T} \underbrace{\left\{ \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} (\mathbf{x}^{(n)})^{T} \right\}}_{=\mathbb{E}[\mathbf{x} \mathbf{x}^{T}], \ N \to \infty}$$

• In practice, given $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$, we approximate Σ by its empirical estimate

$$\mathbf{\Sigma} pprox \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} (\mathbf{x}^{(n)})^T$$

• You can also remove the mean vectors: $\mu = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)}$:

$$\mathbf{\Sigma} pprox rac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \mathbf{\mu}) (\mathbf{x}^{(n)} - \mathbf{\mu})^{T}$$

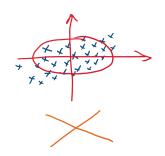
Statistical Interpretation

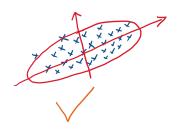
The optimization

$$\underset{\|\mathbf{v}\|_2=1}{\operatorname{argmax}} \mathbf{v}^T \mathbf{\Sigma} \mathbf{v}.$$

asks us to find a principal direction that maximizes the variance.

• Belief: Large variance = "signal", small variance = "noise"





The Eigenface Problem

Figure: The extended Yale Face Database B.

- Dataset: $\{x^{(n)}\}_{n=1}^{N}$.
- Each $\mathbf{x}^{(n)} \in \mathbb{R}^d$ is a vector representation of a $\sqrt{d} \times \sqrt{d}$ image.
- Task 1: Find a low-dimensional representation (This lecture)
- Task 2: Classify faces for a new image (Later)

Low Dimensional Representation

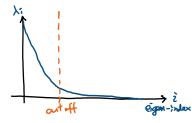
- Estimate the mean vector $\mu = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)}$.
- Estimate the covariance matrix

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \mu) (\mathbf{x}^{(n)} - \mu)^{T}.$$
 (1)

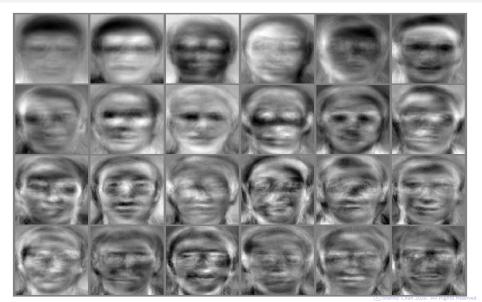
- Eigen-decomposition: $\Sigma = USU^T$.
- ullet When a new image $oldsymbol{y}$ comes, estimate the coefficients:

$$\alpha_i = \boldsymbol{u}_i^T \boldsymbol{y}$$

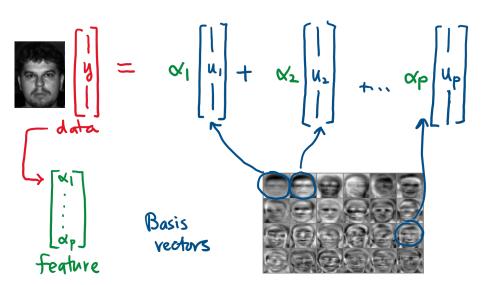
• How many coefficients to use?



The Basis Vectors u_i



Representing Faces



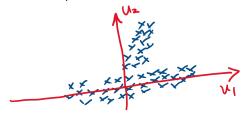
Discussion

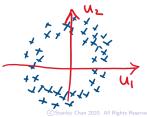
What does PCA do?

- PCA is a tool for dimension reduction.
- It compresses a raw data vector $\mathbf{y} \in \mathbb{R}^d$ into a smaller feature vector $\boldsymbol{\alpha} \in \mathbb{R}^p$.
- You can now do classification in \mathbb{R}^p instead of \mathbb{R}^d .

When will PCA fail?

- When data intrinsically does not have orthogonal projections
- For example, the distributions below





Outline

Feature Analysis

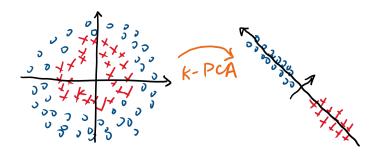
- Lecture 7 Principal Component Analysis (PCA)
- Lecture 8 Hand-Crafted and Deep Features

This Lecture

- PCA
 - Low-dimensional Representation
 - Geometric Interpretation
 - Eigen-Face Problem
- Kernel-PCA
 - Adding kernels to PCA
 - Algorithm
 - Examples

Motivation of Kernel PCA

- Data is originally difficult for PCA
- Find a nonlinear transform
- Idea: Leverage the kernel trick: $k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \langle \phi(\mathbf{x}^{(i)}), \phi(\mathbf{x}^{(j)}) \rangle$
- Example: Left is hard for PCA. After K-PCA, right has a clear principal component.



Kernel for Covariance Matrix

• Assume $\phi(\mathbf{x}^{(n)})$ has zero mean. Then consdier the covariance matrix

$$\mathbf{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)} (\mathbf{x}^{(n)})^{T}.$$

Replacing the outer products by feature transforms

$$\mathbf{x}^{(n)} \rightarrow \phi(\mathbf{x}^{(n)}),$$

for some nonlinear transformation ϕ .

• If this can be done, then the covariance will become

$$\mathbf{\Sigma} = \frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}^{(n)}) \phi(\mathbf{x}^{(n)})^{\mathsf{T}}.$$

• But this is not enough because a kernel needs an inner product

$$k(\mathbf{x}^{(n)}, \mathbf{x}^{(m)}) = \phi(\mathbf{x}^{(n)})^T \phi(\mathbf{x}^{(m)}).$$

Kernel Trick

• Recall: PCA solves the eigen-decomposition problem:

$$\Sigma u = \lambda u$$

So we also need to consider u.

 How about this candidate? (Recall: In Kernel Method we express the model parameter as a linear combination of the samples):

$$\boldsymbol{u} = \sum_{n=1}^{N} \alpha_n \phi(\boldsymbol{x}^{(n)}).$$

• Substitute this into the equation $\Sigma u = \lambda u$:

$$\underbrace{\left(\frac{1}{N}\sum_{n=1}^{N}\phi(\mathbf{x}^{(n)})\phi(\mathbf{x}^{(n)})^{T}\right)}_{\mathbf{\Sigma}}\underbrace{\left(\sum_{m=1}^{N}\alpha_{m}\phi(\mathbf{x}^{(m)})\right)}_{\mathbf{y}} = \lambda\underbrace{\left(\sum_{n=1}^{N}\alpha_{n}\phi(\mathbf{x}^{(n)})\right)}_{\lambda\mathbf{y}}$$

Kernel Trick

This means

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}^{(n)}) \left(\sum_{m=1}^{N} \alpha_m \phi(\mathbf{x}^{(n)})^T \phi(\mathbf{x}^{(m)}) \right) = \lambda \sum_{n=1}^{N} \alpha_n \phi(\mathbf{x}^{(n)})$$

• Recognizing $\phi(\mathbf{x}^{(n)})^T \phi(\mathbf{x}^{(m)}) = k(\mathbf{x}^{(n)}, \mathbf{x}^{(m)})$:

$$\frac{1}{N} \sum_{n=1}^{N} \phi(\mathbf{x}^{(n)}) \left(\sum_{m=1}^{N} \alpha_n \mathbf{k}(\mathbf{x}^{(n)}, \mathbf{x}^{(m)}) \right) = \lambda \sum_{n=1}^{N} \alpha_n \phi(\mathbf{x}^{(n)})$$

• Multiply $\phi(\mathbf{x}^{(\ell)})^T$ on both sides.

$$\frac{1}{N}\sum_{n=1}^{N}k(\mathbf{x}^{(\ell)},\mathbf{x}^{(n)})\left(\sum_{n=1}^{N}\alpha_{n}k(\mathbf{x}^{(n)},\mathbf{x}^{(m)})\right)=\lambda\sum_{n=1}^{N}\alpha_{n}k(\mathbf{x}^{(\ell)},\mathbf{x}^{(n)})$$

• This is $\frac{1}{N}K(K\alpha) = \lambda K\alpha$.

Eigenvectors of K-PCA

- Rearrange the terms we have that $\mathbf{K}^2 \alpha = N \lambda \mathbf{K} \alpha$.
- ullet We can remove one of the K's since it only causes issues with zero-eigenvalues which are not important to us anyway. So we have

$$\mathbf{K}\alpha = N\lambda\alpha.$$
 (2)

• This is just another eigen-decomposition problem. We moved from $\Sigma u = \lambda u$ to $K\alpha = N\lambda\alpha$. Note that α is the coefficients for u:

$$\mathbf{u} = \sum_{n=1}^{N} \alpha_n \phi(\mathbf{x}^{(n)}) = \mathbf{\Phi} \alpha,$$

where $\mathbf{\Phi} = [\phi(\mathbf{x}^{(1)}), \dots, \phi(\mathbf{x}^{(N)})]$ is the transformed data matrix. Recall $\mathbf{\Phi}\mathbf{\Phi}^T = \mathbf{K}$ is the kernel matrix where

$$[\mathbf{K}]_{ij} = \phi(\mathbf{x}^{(i)})^T \phi(\mathbf{x}^{(j)}).$$

Representation in Kernel Space

- If you run eigen-decomposition on K, you will get p eigen-vectors $\alpha_1, \ldots, \alpha_p$ where p is the number you choose.
- When a new sample x comes, the j-th representation coefficient is

$$\beta_j = \phi(\mathbf{x})^T \mathbf{u} = \phi(\mathbf{x})^T \sum_{n=1}^N \alpha_{jn} \phi(\mathbf{x}^{(n)}) = \sum_{n=1}^N \alpha_{jn} k(\mathbf{x}, \mathbf{x}^{(n)}).$$
(3)

ullet For the entire representation $oldsymbol{eta} \in \mathbb{R}^p$, we have

$$\beta = \begin{bmatrix} ---\alpha_1^T - -- \\ \vdots \\ ---\alpha_p^T - -- \end{bmatrix} \begin{bmatrix} k(\mathbf{x}, \mathbf{x}^{(1)}) \\ k(\mathbf{x}, \mathbf{x}^{(2)}) \\ \vdots \\ k(\mathbf{x}, \mathbf{x}^{(N)}) \end{bmatrix}$$
(4)

where $\alpha_j = [\alpha_{j1}, \dots, \alpha_{iN}]^T$.

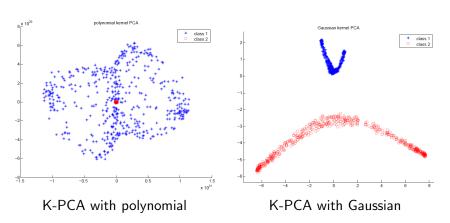
Example

Here is an example taken from Wang (2012) Kernel Principal Component Analysis and its Applications https://arxiv.org/abs/1207.3538



Example

Here is an example taken from Wang (2012) Kernel Principal Component Analysis and its Applications https://arxiv.org/abs/1207.3538



Reading List

PCA Tutorial

 Jonathon Shlens "A Tutorial on Principal Component Analysis", https://arxiv.org/pdf/1404.1100.pdf

PCA: Should We Remove Mean?

- Paul Honeine, "An eigenanalysis of data centering in machine learning", https://arxiv.org/pdf/1407.2904.pdf
- Does mean centering or feature scaling affect a Principal Component Analysis?

https://sebastianraschka.com/faq/docs/pca-scaling.html

K-PCA

- Quan Wang (2012), "Kernel Principal Component Analysis and its Applications", https://arxiv.org/abs/1207.3538
- Schölkopf et al. (2005), "Kernel Principal Component Analysis", https://link.springer.com/chapter/10.1007/BFb0020217

Appendix

Proof of Eigenvalue Problem

We want to prove that the solution to the problem

$$\widehat{\mathbf{v}} = \underset{\|\mathbf{v}\|_2=1}{\operatorname{argmax}} \mathbf{v}^T \mathbf{\Sigma} \mathbf{v}.$$

is the eigenvector of the matrix Σ . To show that, we first write down the Lagrangian:

$$L(\mathbf{v}, \lambda) = \mathbf{v}^T \mathbf{\Sigma} \mathbf{v} - \lambda (\|\mathbf{v}\|^2 - 1)$$

Take derivative w.r.t. \mathbf{v} and setting to zero yields

$$\nabla_{\mathbf{v}} L(\mathbf{v}, \lambda) = 2\mathbf{\Sigma}\mathbf{v} - 2\lambda\mathbf{v} = \mathbf{0}.$$

This is equivalent to $\Sigma v = \lambda v$. So if $\Sigma = USU^T$, then by letting $v = u_i$ and $\lambda = s_i$ we can satisfy the condition since

$$\Sigma u_i = USU^T u_i = USe_i = s_i u_i.$$