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Overview

Supervised Learning for Classification
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Feature Analysis
@ Lecture 7 Principal Component Analysis (PCA)
@ Lecture 8 Hand-Crafted and Deep Features

This Lecture
e PCA

o Low-dimensional Representation
o Geometric Interpretation
e Eigen-Face Problem
o Kernel-PCA
o Adding kernels to PCA
o Algorithm
o Examples
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|
Low-Dimensional Representation
Consider a set of data point {x(1), x(?) ... x(M)}

These data points are living in a high dimensional space x(") ¢ R?
Find a low dimensional representation in RP where p < d

Equivalent to finding the principal components vy, ..., v, such that

p
x(M ~ Za,(.")v;
i=1

Then every x(" € R? can be represented using (") € RP.
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One Sample Analysis

@ Consider a simpler problem: One data point x and one direction v.

@ We want to find a direction v and a scalar & such that
| 7

(v,@) = argmin || |x| —a |v
Ivlle=Ler || | | |

o First assume v is available. Then take derivative w.r.t. a:

2vT(x —av) =0 = a=v'x.
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-
One Sample Analysis
T

@ Substitute a = x' v into the optimization
@ Then the optimization becomes

argmin ||x — av||? = argmin {xTx —2axTv + a2yj/v}
Ivl2=1 l[vl2=1

= argmin
vi2=1

{
= argmin { x v)x v+(xTv)2}
{

— 2ax v—l—a}

lv]2=1

= argmax

vixxT v}
[[v]l2=1

@ Take expectation on both sides:
argmin E,||x — av||? = argmax VTEX{XXT}V

[[v]l2=1 [vi2=1
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Eigenvalue Problem

o Let X d:e}cIE[xxT].
@ Then the optimization problem is

argmaxv' Xv.
llvi=1

@ The solution to this problem is the eigenvalue and eigenvectors of X.

Theorem

Let ¥ be a d x d matrix with eigen-decomposition £ = USUT. Then,
the optimization

V = argmaxv ' Zv.
l[viz=1

has a solution v =u; foranyi=1,...,d.

Proof: See Appendix.
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Finite Samples

@ When there are N training samples, the optimization is

N
argmin Z Hx —al v||2 = argmax v {It/ Zx(")(x("))T}v
n=1

lv]l2=1 llvil2=
=E[||x—av|?], N—oo =E[xxT], N—oco
o In practice, given x( ... x(M) we approximate X by its empirical
estimate
1N
~ (n)
~ L3
n=1
@ You can also remove the mean vectors: p = % ZnN:1 x(n);
T
Ex gy 20 - )T
n—
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Statistical Interpretation

@ The optimization

argmaxv ' Zv.
[vi2=1

asks us to find a principal direction that maximizes the variance.

o Belief: Large variance = “signal”, small variance = “noise”
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The Eigenface Problem

Figure: The extended Yale Face Database B.

o Dataset: {x(MW}N_
e Each x(" < RY is a vector representation of a v/d x v/d image.
e Task 1: Find a low-dimensional representation (This lecture)

@ Task 2: Classify faces for a new image (Later)
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Low Dimensional Representation

: 1 N
Estimate the mean vector pu = 5 >4 x(M),
Estimate the covariance matrix

1 N
= o3 ) - )T (1)
n=1

Eigen-decomposition: ¥ = USUT.
When a new image y comes, estimate the coefficients:

T
ap=u;y

How many coefficients to use?
I

|
|
)
)
)
)
)
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Representing Faces
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Discussion

What does PCA do?
@ PCA is a tool for dimension reduction.

o It compresses a raw data vector y € R? into a smaller feature vector
a € RP,
@ You can now do classification in RP instead of RY.

When will PCA fail?
@ When data intrinsically does not have orthogonal projections
@ For example, the distributions below
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Outline

Feature Analysis
@ Lecture 7 Principal Component Analysis (PCA)
@ Lecture 8 Hand-Crafted and Deep Features

This Lecture
o PCA

o Low-dimensional Representation
o Geometric Interpretation
o Eigen-Face Problem
o Kernel-PCA
e Adding kernels to PCA
e Algorithm
o Examples
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Motivation of Kernel PCA

e Data is originally difficult for PCA

@ Find a nonlinear transform

o Idea: Leverage the kernel trick: k(x(), xU)) = (p(x(1)), p(xU)))

o Example: Left is hard for PCA. After K-PCA, right has a clear
principal component.
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Kernel for Covariance Matrix

o Assume ¢(x(") has zero mean. Then consdier the covariance matrix

1N
- — (M (x(MT
)X N ngl x\W(x\") T

@ Replacing the outer products by feature transforms
x5 p(x(),

for some nonlinear transformation ¢.
@ If this can be done, then the covariance will become

N
1
- - Oy (MY A (T
p N,,El@(x Yo(x\")".

@ But this is not enough because a kernel needs an inner product
K(x™, x(M) = o(xt™) T o (x (™).
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Kernel Trick

@ Recall: PCA solves the eigen-decomposition problem:
u=J\u

So we also need to consider u

@ How about this candidate? (Recall: In Kernel Method we express the
model parameter as a linear combination of the samples):

N
u= Z and(x(M).
n=1

@ Substitute this into the equation Tu = \u:

) ) )

)X u

Au
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Kernel Trick

@ This means

1 N N N
N > o(x) <Z am¢(x(”))T¢(X(m))> =AY anp(x)
n=1 m=1 n=1

o Recognizing ¢(x(MTp(x(M) = k(x(n), x(m)):

1 N N N
52 o™ (Z ank(x(", x“’”)) =AY anp(x(™)
n=1 m=1 n=1

o Multiply ¢(x(©)T on both sides.

N N
%Z K(x), x{ (Z Ak (x(M, x(m)) ) A3 ank(x®, x()
n=1

n=1

e Thisis yK(Ka) = AKa.
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Eigenvectors of K-PCA

o Rearrange the terms we have that K?a = NAKa.

@ We can remove one of the K's since it only causes issues with
zero-eigenvalues which are not important to us anyway. So we have

Ko = Na. (2)

@ This is just another eigen-decomposition problem. We moved from
Yu = luto Ka = NAa. Note that « is the coefficients for u:

N
u= Z and(x(M) = da,
n=1

where ® = [¢p(x(M), ..., ¢(x(M)] is the transformed data matrix.
Recall ®® 7 = K is the kernel matrix where

(K] = o(xD) T p(xU)).
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Representation in Kernel Space

@ If you run eigen-decomposition on K, you will get p eigen-vectors
ag,...,op where p is the number you choose.

@ When a new sample x comes, the j-th representation coefficient is

N N
8= o(x)Tu=(x)" S jnd(xM) = 3 ajmk(x, x).  (3)
n=1 n=1

@ For the entire representation 3 € RP, we have

k(x, x(1))
T 9
T T | Kex®)
8= ; | (4)
T .
T T T k(e x )

where aj = [oy1, . .. ,OéiN]T-

21/26



Example

Here is an example taken from Wang (2012) Kernel Principal Component
Analysis and its Applications https://arxiv.org/abs/1207.3538
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Example

Here is an example taken from Wang (2012) Kernel Principal Component
Analysis and its Applications https://arxiv.org/abs/1207.3538

x 107 polynomial kemel PCA
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K-PCA with polynomial K-PCA with Gaussian
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-
Reading List

PCA Tutorial
@ Jonathon Shlens “A Tutorial on Principal Component Analysis”,
https://arxiv.org/pdf/1404.1100.pdf
PCA: Should We Remove Mean?
@ Paul Honeine, “An eigenanalysis of data centering in machine
learning”, https://arxiv.org/pdf/1407.2904.pdf
@ Does mean centering or feature scaling affect a Principal Component
Analysis?
https://sebastianraschka.com/faq/docs/pca-scaling.html
K-PCA
e Quan Wang (2012), “Kernel Principal Component Analysis and its
Applications”, https://arxiv.org/abs/1207.3538

@ Scholkopf et al. (2005), “Kernel Principal Component Analysis”,
https://link.springer.com/chapter/10.1007/BFb0020217
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Appendix
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Proof of Eigenvalue Problem

We want to prove that the solution to the problem

V =argmaxv' Zv.
l[vi2=1

is the eigenvector of the matrix X. To show that, we first write down the
Lagrangian:

Liv,\)=v Zv - \(|v|?-1)
Take derivative w.r.t. v and setting to zero yields
Vyl(v,\) =2Xv —2\v = 0.

This is equivalent to v = Av. So if £ = USUT, then by letting v = u;
and A\ = s; we can satisfy the condition since
ZU,' = USUTU,' = USe,- = S;u;.
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