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Goal: Understand the geometry of linear separability.

o Notations
o Input Space, Output Space, Hypothesis
e Discriminant Function

@ Geometry of Discriminant Function
e Separating Hyperplane
o Normal Vector
e Distance from Point to Plane

@ Linear Separability
o Which set is linearly separable?
o Separating Hyperplane Theorem
o What if theorem fails?
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Supervised Classification

The goal of supervised classification is to construct a decision boundary
such that the two classes can be (maximally) separated.
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Terminology

o Input vectors: x1,x2,...,Xpn.
e E.g., images, speech, EEG signal, rating, etc

Input space: X. Every x, € X.

Labels Yi,¥Y2,--., YN-
Label space: V. Every y, € ).
o If labels are binary, e.g., y, = £1, then

Y ={+1,-1}.

o Labels are arbitrary. {+1,—1} and {0,1} has no difference.
Target function f : X — ). Unknown.
o Relationship:

(]

Yn = f(X,,).
Hypothesis h: X — ). Ideally, want

h(x) ~ f(x), Vx e X.
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Binary Case
If we restrict ourselves to binary classifier, then
1, if g(x)>0
h(x) =< 0, if g(x)<0
either, if g(x)=0

g : X — R is called a discriminant function.
g(x) > 0: x lives on the positive side of g.
g(x) < 0: x lives on the negative side of g.
g(x) = 0: The decision boundary.

You can also claim

+1, if g(x)>0
h(x) =< —1, if g(x)<0
either, if g(x)=0

No difference as far as decision is concerned.
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Binary Case
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Linear Discriminant Function

A linear discriminant function takes the form

g(x) =w'x+ w.

w € RY: linear coefficients

°
e wp € R: bias / offset
@ Define the overall parameter
0= {w,w} € R
@ Example:
o If d =2, then

g(X) = WhrXo + WiX1 + Wp.

o g(x) =0 means

1 Wo

Xp=——x31+ ——

w2 w2

~—— ~——
slope y-intercept
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Linear Discriminant Function
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Goal: Understand the geometry of linear separability.

o Notations
o Input Space, Output Space, Hypothesis
e Discriminant Function

@ Geometry of Discriminant Function
e Separating Hyperplane
o Normal Vector
e Distance from Point to Plane

@ Linear Separability
o Which set is linearly separable?
o Separating Hyperplane Theorem
o What if theorem fails?
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Linear Discriminant Function

@ In high-dimension,

g(x) =w'x+ w.

is a hyperplane.

e Separating Hyperplane:
H={x|g(x) =0}
= {x|w'x+w =0}

@ x € H means x is on the
decision boundary.

e w/|w||2 is the normal vector
of H.
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Why is w the Normal Vector?

wlz, +wy =0
wlxs +wy =0
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Why is w the Normal Vector?

Pick x1 and x> from H.

So g(x1) =0 and g(x2) =0.
This means:

WTX1 4+ wy =0, and WTX2 + wy = 0.

Consider the difference vector x; — x».

x1 — X2 is the tangent vector on the surface of H.
Check

w'(x1—x2) = (w'x1 +wp) — (W' x2 + wg) = 0.

So w is perpendicular to x; — x2, hence it is the normal.

Normalize w/||w||2 so that it has unit norm.
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Distance from xq to g(x) =0

Pick a point x, on ‘H

Xp is the closest point to xq
Xg — Xp is the normal direction
So, for some scalar n > 0,

w
[wll2

X0 — Xp =17

@ x,ison H. So

T
gxp)=w xp,+w =0
Therefore, we can show that ( p) P

g(xo) = w ' xo + wy

=w! ("”*”H E )*W"

= g(xp) +nllwll2 = nfwl2.
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Distance from xq to g(x) =0

@ So distance is

_ 8(xo)
w2

@ The closest point x, is

w

=20 ]
_ . 8&x) w
[wil2 [lwl2
Conclusion:
g(xo) w
X = Xg — 2 =7 . _
P [wl]2 w2
SN—— SN——
distance normal vector
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Distance from xq to g(x) =0
Alternative Solution:

We can also obtain the same result by solving the optimization:

1
Xp = argmin §||x — xo||? subject to w'x+ wy =0.
X

o Let Lagrangian
1
£(x,2) = 5[1x = xo||* = A(w " x + wo)

@ Stationarity condition implies

VxL(x,A) =(x—x0)—w =0,
VaL(x,A) =wlx+w =0.
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Distance from xq to g(x) =0

Let us do some derivation:
ViL(x,\) =(x—x0)—w =0,

V,\E(x, /\) =wlx+ wo =0.
e This gives x = X0+ \w
= wixtwy =w'(xo+Iw)twy
= 0 =wTxo+ \|w|?+ wo
= 0 = g(x0) + A[w]]?
_ _ g(xo)
- A =T »
— 40
= X = Xqg + ( ”WHQ)W.
@ Therefore, we arrive at the same result:
g(xo) w
X = X0 —_ .
P w2 w2
——

distance normal vector
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Goal: Understand the geometry of linear separability.

o Notations
o Input Space, Output Space, Hypothesis
e Discriminant Function

@ Geometry of Discriminant Function
e Separating Hyperplane
o Normal Vector
e Distance from Point to Plane

@ Linear Separability
o Which set is linearly separable?
o Separating Hyperplane Theorem
e What if theorem fails?
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Which one is Linearly Separable? Which one is Not?

U

Non-convex Overlap

Linearly Separable
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Separating Hyperplane Theorem

Can we always find a separating hyperplane?
@ No.
@ Unless the classes are linearly separable.

@ If convex and not overlapping, then yes.

Theorem (Separating Hyperplane Theorem)

Let C1 and Co be two closed convex sets such that C1t N Co = (). Then,
there exists a linear function

g(x) = w'x + w,

such that g(x) > 0 for all x € C; and g(x) < 0 for all x € Ca.

Remark: The theorem above provides sufficiency but not necessity for
linearly separability.
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Separating Hyperplane Theorem

Pictorial “proof”:
@ Pick two points x* and y* s.t. the distance between the sets is
minimized.
@ Define the mid-point as xo = (x* + y*)/2.
@ Draw the separating hyperplane with normal w = x* — y*
o Convexity implies any inner product must be positive.
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Separating Hyperplane Theorem
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-
Linearly Separable?

o | have data {x1,...,xn}.
@ Closed. Convex. Non-overlapping.
@ Separating hyperplane theorem: | can find a line.
o Victory?
@ Not quite.
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-
When Theory Fails

Theorem (Separating Hyperplane Theorem)

Let C; and Cy be two closed convex sets such that C1 N Co = (). Then,
there exists a linear function

g(x) = w'x+

such that g(x) > 0 for all x € C1 and g(x) < 0 for all x € Cs.

@ Finding a separating hyperplane for training set does not imply it
will work for the testing set.

@ Separating hyperplane theorem is more often used in theoretical
analysis by assuming properties of the testing set.

o If a dataset is linearly separable, then you are guaranteed to find a
perfect classifier. Then you can say how good is the classifier you
designed compared to the perfect one.
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Linear Classifiers Do Not Work
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o Intrinsic geometry of the two classes could be bad.

@ The training set could be lack of training samples.

@ Solution 1: Use non-linear classifiers, e.g.,
g(x)=x"TWx +w' x4+ wp.

@ Solution 2: Kernel method, e.g., Radial basis function.

@ Solution 3: Extract features, e.g., g(x) = w' ¢(x).
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Reading List

Separating Hyperplane:

@ Duda, Hart and Stork's Pattern Classification, Chapter 5.1 and 5.2.

@ Princeton ORFE-523, Lecture 5 on Separating hyperplane
http://www.princeton.edu/~amirali/Public/Teaching/
ORF523/516/0RF523_516_Lec5_gh.pdf

@ Cornell ORIE-6300, Lecture 6 on Separating hyperplane
https://people.orie.cornell.edu/dpw/orie6300/£al112008/
Lectures/lec06.pdf

o Caltech, Lecture Note http://www.its.caltech.edu/~kcborder/
Notes/SeparatingHyperplane.pdf
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http://www.princeton.edu/~amirali/Public/Teaching/ORF523/S16/ORF523_S16_Lec5_gh.pdf
http://www.princeton.edu/~amirali/Public/Teaching/ORF523/S16/ORF523_S16_Lec5_gh.pdf
https://people.orie.cornell.edu/dpw/orie6300/fall2008/Lectures/lec06.pdf
https://people.orie.cornell.edu/dpw/orie6300/fall2008/Lectures/lec06.pdf
http://www.its.caltech.edu/~kcborder/Notes/SeparatingHyperplane.pdf
http://www.its.caltech.edu/~kcborder/Notes/SeparatingHyperplane.pdf

Appendix
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|
Proof of Separating Hyperplane Theorem

@ Conjecture: Let's see if this is the correct hyperplane

g(x) = w'(x - xo)

. X" +y"
= (x y)T(x— 5 )

* (|2 * (12
* X — |y
7y)rx7|! I 2|| |

= (x*

@ According to picture, we want g(x) > 0 for all x € C;.

@ Suppose not. Assume

O e V7

gx)=(x"—y") ' x 5 <0.

See if we can find a contradiction.
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Proof of Separating Hyperplane Theorem

@ (C; is convex.
@ Pick x €

o Pick x* € (1
o Let0< K1

_________________ . e Construct a point
xy= (1= A)x" + Ax.
e Convex means
x) €C
So we must have
Ixa =yl = x|

28/34



|
Proof of Separating Hyperplane Theorem

@ Pick an arbitrary point x € Cy.

x* is fixed already.

Pick x along the line connecting x and x*.
Convexity implies x) € C;.

So [[xx — y*|| > |Ix* — y*||. If not, something is wrong.

Let us do some algebra:
lxx =y 1 = [I(1 = X)x* + ax — ™2
= [Ix* =y + Ax — x|
— lx* =y |2+ 20(x" — y) T (x — x*) + A2[x — x|
= [Ix* = y* 17+ 22w T (x — x*) + A% x — x|

Remember: w ' (x — xq) < 0.
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Proof of Separating Hyperplane Theorem

X = y* 112 = 1Ix* = y* |12 + 22w T (x — x*) + A%|x — x*||?
< [lx* =y 20w xo — wx*) + N|x — x*||?
12 _ *12
+ A% x = x*|?
=[x =y |2 = Alx" = y* |2 + A%|x — x|
—A =B
S VRS
= |x* = y*|> = AM(A = AB).
Now, pick an x such that A— AB > 0. Then —A\(A— AB) < 0.
A lx =y

A< 5 =—T—.
B flx —x*|]2
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Proof of Separating Hyperplane Theorem

Therefore, if we choose A such that A— AB >0, i.e.,

A lx*—y|?
AP L A
B [x — x|

then —A(A— AB) <0, and so
Ixx = ™[I < [Ix* = y*||> = M(A = AB)
<|Ix* = y*|I?
Contradiction, because ||x* — y*||?> should be the smallest!

Conclusion:
e If x € Cy, then g(x) > 0.
e By symmetry, if x € C,, then g(x) < 0.
@ And we have found the separating hyperplane (w, wp).
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Q&A 1: What is a convex set?

@ A set C is convex if the following condition is met.

@ PickxeCandye C,andlet 0 <A <1 If Ax+(1— M)y isalsoin
C for any x, y and A, then C is convex.

@ Basically, it says that you can pick two points and draw a line. If the
line is also in the set, then the set is convex.

Sy + (1- )\)3 /

Comvex Not Convex
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Q&A 2: |s there a way to check whether two sets are
linearly separable?

@ No, at least | do not know.

@ The best you can do is to check whether a training set is linearly
separable.

@ To do so, solve the hard SVM. If you can solve it with zero training
error, then you have found one. If the hard SVM does not have a
solution, then the training set is not separable.

@ Checking the testing set is impossible unless you know the
distributions of the samples. But if you know the distributions, you
can derive formula to check linear separability.

@ For example, Gaussians are not linearly separable because no matter
how unlikely you can always find a sample that lives in the wrong
side. Uniform distributions are linearly separable.

@ Bottom line: Linear separability, in my opinion, is more of a
theoretical tool to describe the intrinsic property of the problem. It

is not for computational purposes.
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Q&A 3: If two sets are not convex, how do | know if it is
linearly separable?

@ You can look at the convex hull.
@ A convex hull is the smallest convex set that contains the original set.
@ If the convex hulls are not overlapping, then linearly separable.

e For additional information about convex sets, convex hulls, you can
check Chapter 2 of
https://web.stanford.edu/class/ee364a/lectures.html
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