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Overview
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Outline

Goal: Understand the geometry of linear separability.

Notations

Input Space, Output Space, Hypothesis
Discriminant Function

Geometry of Discriminant Function

Separating Hyperplane
Normal Vector
Distance from Point to Plane

Linear Separability

Which set is linearly separable?
Separating Hyperplane Theorem
What if theorem fails?
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Supervised Classification

The goal of supervised classification is to construct a decision boundary
such that the two classes can be (maximally) separated.
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Terminology

Input vectors: x1, x2, . . . , xN .
E.g., images, speech, EEG signal, rating, etc

Input space: X . Every xn ∈ X .

Labels y1, y2, . . . , yN .
Label space: Y. Every yn ∈ Y.

If labels are binary, e.g., yn = ±1, then

Y = {+1,−1}.

Labels are arbitrary. {+1,−1} and {0, 1} has no difference.

Target function f : X → Y. Unknown.
Relationship:

yn = f (xn).

Hypothesis h : X → Y. Ideally, want

h(x) ≈ f (x), ∀x ∈ X .

5 / 34



c©Stanley Chan 2020. All Rights Reserved.

Binary Case

If we restrict ourselves to binary classifier, then

h(x) =


1, if g(x) > 0

0, if g(x) < 0

either, if g(x) = 0

g : X → R is called a discriminant function.

g(x) > 0: x lives on the positive side of g .

g(x) < 0: x lives on the negative side of g .

g(x) = 0: The decision boundary.

You can also claim

h(x) =


+1, if g(x) > 0

−1, if g(x) < 0

either, if g(x) = 0

No difference as far as decision is concerned.
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Binary Case
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Linear Discriminant Function

A linear discriminant function takes the form

g(x) = wTx + w0.

w ∈ Rd : linear coefficients

w0 ∈ R: bias / offset

Define the overall parameter

θ = {w ,w0} ∈ Rd+1.

Example:
If d = 2, then

g(x) = w2x2 + w1x1 + w0.

g(x) = 0 means

x2 = −w1

w2︸ ︷︷ ︸
slope

x1 + −w0

w2︸ ︷︷ ︸
y-intercept

.
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Linear Discriminant Function
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Linear Discriminant Function

In high-dimension,
g(x) = wTx + w0.

is a hyperplane.

Separating Hyperplane:

H = {x | g(x) = 0}
= {x | wTx + w0 = 0}

x ∈ H means x is on the
decision boundary.

w/‖w‖2 is the normal vector
of H.
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Why is w the Normal Vector?
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Why is w the Normal Vector?

Pick x1 and x2 from H.

So g(x1) = 0 and g(x2) = 0.

This means:

wTx1 + w0 = 0, and wTx2 + w0 = 0.

Consider the difference vector x1 − x2.

x1 − x2 is the tangent vector on the surface of H.

Check

wT (x1 − x2) = (wTx1 + w0)− (wTx2 + w0) = 0.

So w is perpendicular to x1 − x2, hence it is the normal.

Normalize w/‖w‖2 so that it has unit norm.
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Distance from x0 to g(x) = 0

Pick a point xp on H
xp is the closest point to x0

x0 − xp is the normal direction

So, for some scalar η > 0,

x0 − xp = η
w
‖w‖2

xp is on H. So

g(xp) = wTxp + w0 = 0
Therefore, we can show that

g(x0) = wTx0 + w0

= wT

(
xp + η

w
‖w‖2

)
+ w0

= g(xp) + η‖w‖2 = η‖w‖2.
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Distance from x0 to g(x) = 0

So distance is

η =
g(x0)

‖w‖2

The closest point xp is

xp = x0 − η
w
‖w‖2

= x0 −
g(x0)

‖w‖2
· w
‖w‖2

.

Conclusion:

xp = x0 − g(x0)

‖w‖2︸ ︷︷ ︸
distance

· w
‖w‖2︸ ︷︷ ︸

normal vector
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Distance from x0 to g(x) = 0

Alternative Solution:

We can also obtain the same result by solving the optimization:

xp = argmin
x

1

2
‖x − x0‖2 subject to wTx + w0 = 0.

Let Lagrangian

L(x , λ) =
1

2
‖x − x0‖2 − λ(wTx + w0)

Stationarity condition implies

∇xL(x , λ) = (x − x0)− λw = 0,
∇λL(x , λ) = wTx + w0 = 0.
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Distance from x0 to g(x) = 0

Let us do some derivation:

∇xL(x , λ) = (x − x0)− λw = 0,
∇λL(x , λ) = wTx + w0 = 0.

This gives x = x0 + λw
⇒ wTx+w0 = wT (x0 + λw)+w0

⇒ 0 = wTx0 + λ‖w‖2 + w0

⇒ 0 = g(x0) + λ‖w‖2

⇒ λ = −g(x0)
‖w‖2

⇒ x = x0 +
(
−g(x0)
‖w‖2

)
w .

Therefore, we arrive at the same result:

xp = x0 − g(x0)

‖w‖2︸ ︷︷ ︸
distance

· w
‖w‖2︸ ︷︷ ︸

normal vector
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Which one is Linearly Separable? Which one is Not?
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Separating Hyperplane Theorem

Can we always find a separating hyperplane?

No.

Unless the classes are linearly separable.

If convex and not overlapping, then yes.

Theorem (Separating Hyperplane Theorem)

Let C1 and C2 be two closed convex sets such that C1 ∩ C2 = ∅. Then,
there exists a linear function

g(x) = wTx + w0,

such that g(x) > 0 for all x ∈ C1 and g(x) < 0 for all x ∈ C2.

Remark: The theorem above provides sufficiency but not necessity for
linearly separability.
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Separating Hyperplane Theorem

Pictorial “proof”:

Pick two points x∗ and y∗ s.t. the distance between the sets is
minimized.
Define the mid-point as x0 = (x∗ + y∗)/2.
Draw the separating hyperplane with normal w = x∗ − y∗

Convexity implies any inner product must be positive.
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Linearly Separable?

I have data {x1, . . . , xN}.
Closed. Convex. Non-overlapping.
Separating hyperplane theorem: I can find a line.
Victory?
Not quite.
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When Theory Fails

Theorem (Separating Hyperplane Theorem)

Let C1 and C2 be two closed convex sets such that C1 ∩ C2 = ∅. Then,
there exists a linear function

g(x) = wTx + w0,

such that g(x) > 0 for all x ∈ C1 and g(x) < 0 for all x ∈ C2.

Finding a separating hyperplane for training set does not imply it
will work for the testing set.

Separating hyperplane theorem is more often used in theoretical
analysis by assuming properties of the testing set.

If a dataset is linearly separable, then you are guaranteed to find a
perfect classifier. Then you can say how good is the classifier you
designed compared to the perfect one.
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Linear Classifiers Do Not Work

Example 1 Example 2

Intrinsic geometry of the two classes could be bad.

The training set could be lack of training samples.

Solution 1: Use non-linear classifiers, e.g.,
g(x) = xTWx + wTx + ω0.

Solution 2: Kernel method, e.g., Radial basis function.

Solution 3: Extract features, e.g., g(x) = wTφ(x).

24 / 34



c©Stanley Chan 2020. All Rights Reserved.

Reading List

Separating Hyperplane:

Duda, Hart and Stork’s Pattern Classification, Chapter 5.1 and 5.2.

Princeton ORFE-523, Lecture 5 on Separating hyperplane
http://www.princeton.edu/~amirali/Public/Teaching/

ORF523/S16/ORF523_S16_Lec5_gh.pdf

Cornell ORIE-6300, Lecture 6 on Separating hyperplane
https://people.orie.cornell.edu/dpw/orie6300/fall2008/

Lectures/lec06.pdf

Caltech, Lecture Note http://www.its.caltech.edu/~kcborder/

Notes/SeparatingHyperplane.pdf
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Appendix
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Proof of Separating Hyperplane Theorem

Conjecture: Let’s see if this is the correct hyperplane

g(x) = wT (x − x0)

= (x∗ − y∗)T
(

x − x∗ + y∗

2

)
= (x∗ − y∗)Tx − ‖x

∗‖2 − ‖y∗‖2

2

According to picture, we want g(x) > 0 for all x ∈ C1.

Suppose not. Assume

g(x) = (x∗ − y∗)Tx − ‖x
∗‖2 − ‖y∗‖2

2
< 0.

See if we can find a contradiction.
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Proof of Separating Hyperplane Theorem

C1 is convex.

Pick x ∈ C1
Pick x∗ ∈ C1
Let 0 ≤ λ ≤ 1

Construct a point

xλ = (1− λ)x∗ + λx .

Convex means

xλ ∈ C1

So we must have
‖xλ − y∗‖ ≥ ‖x∗ − y∗‖
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Proof of Separating Hyperplane Theorem

Pick an arbitrary point x ∈ C1.

x∗ is fixed already.

Pick xλ along the line connecting x and x∗.
Convexity implies xλ ∈ C1.

So ‖xλ − y∗‖ ≥ ‖x∗ − y∗‖. If not, something is wrong.

Let us do some algebra:

‖xλ − y∗‖2 = ‖(1− λ)x∗ + λx − y∗‖2

= ‖x∗ − y∗ + λ(x − x∗)‖2

= ‖x∗ − y∗‖2 + 2λ(x∗ − y∗)T (x − x∗) + λ2‖x − x∗‖2

= ‖x∗ − y∗‖2 + 2λwT (x − x∗) + λ2‖x − x∗‖2.

Remember: wT (x − x0) < 0.
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Proof of Separating Hyperplane Theorem

‖xλ − y∗‖2 = ‖x∗ − y∗‖2 + 2λwT (x − x∗) + λ2‖x − x∗‖2

< ‖x∗ − y∗‖2 + 2λ(wTx0 −wTx∗) + λ2‖x − x∗‖2

= ‖x∗ − y∗‖2 + 2λ

[(
‖x∗‖2 − ‖y∗‖2

2

)
−wTx∗

]
+ λ2‖x − x∗‖2

= ‖x∗ − y∗‖2 − λ‖x∗ − y∗‖2︸ ︷︷ ︸
=A

+ λ2‖x − x∗‖2︸ ︷︷ ︸
=B

= ‖x∗ − y∗‖2 − λA + λ2B

= ‖x∗ − y∗‖2 − λ(A− λB).

Now, pick an x such that A− λB > 0. Then −λ(A− λB) < 0.

λ <
A

B
=
‖x∗ − y∗‖2

‖x − x∗‖2
.
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Proof of Separating Hyperplane Theorem

Therefore, if we choose λ such that A− λB > 0, i.e.,

λ <
A

B
=
‖x∗ − y∗‖2

‖x − x∗‖2
,

then −λ(A− λB) < 0, and so

‖xλ − y∗‖2 < ‖x∗ − y∗‖2 − λ(A− λB)

< ‖x∗ − y∗‖2

Contradiction, because ‖x∗ − y∗‖2 should be the smallest!

Conclusion:

If x ∈ C1, then g(x) > 0.

By symmetry, if x ∈ C2, then g(x) < 0.

And we have found the separating hyperplane (w ,w0).
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Q&A 1: What is a convex set?

A set C is convex if the following condition is met.

Pick x ∈ C and y ∈ C , and let 0 < λ < 1. If λx + (1− λ)y is also in
C for any x , y and λ, then C is convex.

Basically, it says that you can pick two points and draw a line. If the
line is also in the set, then the set is convex.

32 / 34



c©Stanley Chan 2020. All Rights Reserved.

Q&A 2: Is there a way to check whether two sets are
linearly separable?

No, at least I do not know.
The best you can do is to check whether a training set is linearly
separable.
To do so, solve the hard SVM. If you can solve it with zero training
error, then you have found one. If the hard SVM does not have a
solution, then the training set is not separable.
Checking the testing set is impossible unless you know the
distributions of the samples. But if you know the distributions, you
can derive formula to check linear separability.
For example, Gaussians are not linearly separable because no matter
how unlikely you can always find a sample that lives in the wrong
side. Uniform distributions are linearly separable.
Bottom line: Linear separability, in my opinion, is more of a
theoretical tool to describe the intrinsic property of the problem. It
is not for computational purposes.
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Q&A 3: If two sets are not convex, how do I know if it is
linearly separable?

You can look at the convex hull.

A convex hull is the smallest convex set that contains the original set.

If the convex hulls are not overlapping, then linearly separable.

For additional information about convex sets, convex hulls, you can
check Chapter 2 of
https://web.stanford.edu/class/ee364a/lectures.html
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