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Mathematical Background
@ Lecture 4: Intro to Optimization

@ Lecture 5: Gradient Descent

Lecture 4: Intro to Optimization
@ Unconstrained Optimization

e First Order Optimality
e Second Order Optimality

o Convexity

e What is convexity?
e Convex optimization

@ Constrained Optimization
e Lagrangian
o Examples
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Unconstrained Optimization

minimize f(x)
xXeX

e x* € X is a global minimizer if
o f(x*) < f(x)forany x € X

o x* € X is a local minimizer if
o f(x*) < f(x), for any x in a neighborhood Bs(x*)
o Bs(x*) = {x|[|x —x"[2 < 4}
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Uniqueness of Global Minimizer

If x* is global minimizer, then
@ Objective value f(x*) is unique
@ Solution x* is not necessarily unique
Therefore:
@ Suppose f(x) = g(x) + A||x||1 for some convex g.
° “minixmize f(x)" has a global optimal f(x*).

But there could be multiple x*'s.
@ Some x* maybe better, but not in the sense of f(x).
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First and Second Order Optimality

VFf(x*) =0 and V2f(x*) =0
~—_—— —_—
First order condition Second order condition

Necessary Condition:
If x* is a global (or local) minimizer, then

o Vf(x*)=0.
o V2f(x*) = 0.

Sufficient Condition:
If x* satisfies

e Vf(x*)=0.
o V2f(x*)-0.
then x* is a global (or local) minimizer.
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Why? First Order

e Why is Vf(x*) = 0 necessary?
@ Suppose x* is the minimizer.

@ Pick any direction d, and any step size €. Then
f(x* +ed) = f(x*) + eVF(x*)Td + Of3).

@ Rearranging the terms yields

lim { fix" +ed) = f(x*)} = Vf(x*)d.

e—0 €

>0, Vd

e So VF(x*)"d >0 for all d. True only when Vf(x*) = 0.
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First Order Condition lllustrated
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Why? Second Order

Do third order approximation:

2 3
F(x* +ed) = F(x*) + eVF(x*)Td + S dTV2F(x*)d + ZO(||d|])
=0

Therefore,

L[rte + ed)  £x)] = SdTV(x)d + [SO(d])

62
. 1 * * . 1 T2 * . € 3
!%?[f(x +ed) — f(x )} — SdTV?f(x")d + lim [60(\\d\\ )],
>0
Hence,

%dTv%(x*)d >0, Vvd.

= positive semi-definite!
9/27



N
Second Order Condition lllustrated
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Mathematical Background
@ Lecture 4: Intro to Optimization

@ Lecture 5: Gradient Descent

Lecture 4: Intro to Optimization
@ Unconstrained Optimization

o First Order Optimality
e Second Order Optimality

o Convexity

e What is convexity?
e Convex optimization

@ Constrained Optimization
e Lagrangian
o Examples
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Most Optimization Problems are Not Easy

Minimize the log-sum-exp function:

f(x) = log (Z exp(a] x + bi))

i=1

e Gradient is (exercise)

1 m
Zexp(a,-Tx* + bj)a;.

VF(x*) =
() ST exp(a) x* + by) &

Non-linear equation. No closed-form solution.

Need iterative algorithms, e.g., gradient descent.

Or off-the-shelf optimization solver, e.g., CVX.
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CVX Demonstration

@ Disciplined optimization: It translates the problem for you.
@ Developed by S. Boyd and colleagues (Stanford).
o E.g., Minimize f(x) = log (3X7_; exp(a] x + b;)) + A||x|°.

import cvxpy as cp
import numpy as np

= 100

=3

= np.random.randn(n, d)
= np.random.randn(n)
lambda_ = 0.1

o= aB
I

x = cp.Variable(d)

objective = cp.Minimize(cp.log_sum_exp(A*x - b) + lambda_*cp.sum_squares(x))
constraints = []

prob = cp.Problem(objective, constraints)

optimal_objective_value = prob.solve()
print (optimal_objective_value)
print(x.value)
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Convex Function

Definition
let xe Xandy e X. Let 0 < A < 1. A function f : R” — R is convex
over X if

FOAX+ (1= A)y) < AM(x)+ (1= N)f(y).

The function is called strictly convex if “<" is replaced by “<".
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Example: Which one is convex?
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Verifying Convexity
Any of the following conditions is necessary and sufficient for convexity:
© By definition:

fAx+(1=XN)y) < AM(x)+ (1= XNf(y).

e Function value is lower than the line.

@ First Order Convexity:
fy) > f(x) + VF(x)"(y = x),  ¥x,y € X.

e Tangent line is always lower than the function

© Second Order Convexity: f is convex over X’ if and only if
V2f(x) =0 VxeAX.

o Curvature is positive.
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Tangent Line Condition lllustrated

foa + V0 (4-x)
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Mathematical Background
@ Lecture 4: Intro to Optimization

@ Lecture 5: Gradient Descent

Lecture 4: Intro to Optimization
@ Unconstrained Optimization

o First Order Optimality
e Second Order Optimality

o Convexity

e What is convexity?
e Convex optimization

@ Constrained Optimization
e Lagrangian
o Examples
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Constrained Optimization
Equality Constrained Optimization:
e f
mlpelrﬂgze (x)

subject to hj(x) =0, j=1,... k.

Requires a function: Lagrangian function
k
L0x,v) E f(x) =Y vihy(x).
j=1

v = [u1,...,vx]: Lagrange multipliers or the dual variables.
Solution (x*,v*) satisfies

VxL(x*,v")
Vo L(x*,v")

0,
0

19/27



Example: lllustrating Lagrangian

o Consider the problem
minixmize X1 + X2
subject to x? + x5 = 2.
e Minimizer is x = (-1, —1).

¥y
2 2
/\/X|* X=2
Xy

Xit¥Xa=C

X|-!)(z = C' -
X4 ¥ = W Yeduct oLJeah\lc vahae
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Example: lllustrating Lagrangian
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Example: lllustrating Lagrangian

Y

) = N Th(x)

X, "
HD = GLF K

- ") - X )=
A& V(") = \VhO)=0
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Example: £>-minimization with constraint

o1 2 .
minimize §||x — xol|%, subject to Ax =y.
The Lagrangian function of the problem is
1
£(x,v) = Sllx— xol ~ T (Ax — y).

The first order optimality condition requires

VxL(x,v) = (x—x0) —ATv =0

VoL(x,v)=Ax —y =0.
Multiply the first equation by A on both sides:

A(x —xo) — AATv =

= Ax —Axg =AAv
~—
=y
= y—Axg =AATv
= (AAT) 1 (y — Axy) =v
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Example: £>-minimization with constraint

. 1 .
minimize =[x — xo?, subject to Ax =y.
xeR" 2
The first order optimality condition requires

ViL(x,v)=(x—x0)—ATvr =0
VoL(x,v)=Ax —y =0.

We just showed: v = (AAT)~1 (y — Axp). Substituting this result into
the first order optimality yields

X = xg+ ATy
=x0+AT(AAT) " (y — Axo)

Therefore, the solution is x = xo + AT (AAT)~1(y — Axq).
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Special Case

1
minimize = |x — xol|?, subject to Ax =y.
x€eR" 2
Special case: When Ax =y is simplified to w ' x = 0.

e wix=0is a line.

@ Find a point x on the line that is closest to xg.
@ Solution is

x=xo+w(w w) (0 -w'xq)

x ("’T"O)TW
= X0 — _
[lw?

@ =0
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In practice ...

@ Use CVX to solve problem
@ Here is a MATLAB code

@ Exercise: Turn it into Python.

% MATLAB code: Use CVX to solve min ||x - x0l|, s.t. Ax =y
m = 3; n = 2%m;

A = randn(m,n); xstar = randn(n,1);
y = Axxstar;

x0 = randn(n,1);

cvx_begin

variable x(n)
minimize( norm(x-x0) )
subject to
Axx == y;
cvx_end
% you may compare with the solution x0 + A’*inv(Ax*A’)*(y-A*x0).
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Reading List

Unconstrained Optimality Conditions
o Nocedal-Wright, Numerical Optimization. (Chapter 2.1)
e Boyd-Vandenberghe, Convex Optimization. (Chapter 9.1)
Convexity
@ Nocedal-Wright, Numerical Optimization. (Chapter 1)
e Boyd-Vandenberghe, Convex Optimization. (Chapter 2 and 3)
e CMU, Convex Optimization (Lecture 2 and 4)
https://www.stat.cmu.edu/~ryantibs/convexopt-F18/

e Stanford CS 229 (Tutorial)
http://cs229.stanford.edu/section/cs229-cvxopt.pdf

e UCSD ECE 273 (Tutorial)
http://eceweb.ucsd.edu/~gert/ECE273/Cvx0OptTutPaper.pdf
Constrained Optimization
o Nocedal-Wright, Numerical Optimization. (Chapter 12.1)
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