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Unconstrained Optimization

minimize
x∈X

f (x)

x∗ ∈ X is a global minimizer if

f (x∗) ≤ f (x) for any x ∈ X
x∗ ∈ X is a local minimizer if

f (x∗) ≤ f (x), for any x in a neighborhood Bδ(x∗)
Bδ(x∗) = {x | ‖x − x∗‖2 ≤ δ}

4 / 27



c©Stanley Chan 2020. All Rights Reserved.

Uniqueness of Global Minimizer

If x∗ is global minimizer, then

Objective value f (x∗) is unique

Solution x∗ is not necessarily unique

Therefore:

Suppose f (x) = g(x) + λ‖x‖1 for some convex g .

“minimize
x

f (x)” has a global optimal f (x∗).

But there could be multiple x∗’s.

Some x∗ maybe better, but not in the sense of f (x).
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First and Second Order Optimality

∇f (x∗) = 0︸ ︷︷ ︸
First order condition

and ∇2f (x∗) � 0︸ ︷︷ ︸
Second order condition

.

Necessary Condition:
If x∗ is a global (or local) minimizer, then

∇f (x∗) = 0.

∇2f (x∗) � 0.

Sufficient Condition:
If x∗ satisfies

∇f (x∗) = 0.

∇2f (x∗)�0.

then x∗ is a global (or local) minimizer.
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Why? First Order

Why is ∇f (x∗) = 0 necessary?

Suppose x∗ is the minimizer.

Pick any direction d , and any step size ε. Then

f (x∗ + εd ) = f (x∗) + ε∇f (x∗)Td +���O(ε2).

Rearranging the terms yields

lim
ε→0

{
f (x∗ + εd )− f (x∗)

ε

}
︸ ︷︷ ︸

≥0, ∀d

= ∇f (x∗)Td .

So ∇f (x∗)Td ≥ 0 for all d . True only when ∇f (x∗) = 0.
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First Order Condition Illustrated
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Why? Second Order

Do third order approximation:

f (x∗ + εd ) = f (x∗) + ε∇f (x∗)Td︸ ︷︷ ︸
=0

+
ε2

2
dT∇2f (x∗)d +

ε3

6
O(‖d‖3)

Therefore,

1

ε2

[
f (x∗ + εd )− f (x∗)

]
=

1

2
dT∇2f (x∗)d +

[ ε
6
O(‖d‖3)

]
lim
ε→0

1

ε2

[
f (x∗ + εd )− f (x∗)

]
︸ ︷︷ ︸

≥0

=
1

2
dT∇2f (x∗)d + lim

ε→0

[ ε
6
O(‖d‖3)

]
,

Hence,
1

2
dT∇2f (x∗)d ≥ 0, ∀d .

⇒ positive semi-definite!
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Second Order Condition Illustrated
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Most Optimization Problems are Not Easy

Minimize the log-sum-exp function:

f (x) = log

(
m∑
i=1

exp(aT
i x + bi )

)

Gradient is (exercise)

∇f (x∗) =
1∑m

j=1 exp(aT
j x∗ + bj)

m∑
i=1

exp(aT
i x∗ + bi )ai .

Non-linear equation. No closed-form solution.

Need iterative algorithms, e.g., gradient descent.

Or off-the-shelf optimization solver, e.g., CVX.
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CVX Demonstration

Disciplined optimization: It translates the problem for you.

Developed by S. Boyd and colleagues (Stanford).

E.g., Minimize f (x) = log
(∑n

i=1 exp(aT
i x + bi )

)
+ λ‖x‖2.

import cvxpy as cp

import numpy as np

n = 100

d = 3

A = np.random.randn(n, d)

b = np.random.randn(n)

lambda_ = 0.1

x = cp.Variable(d)

objective = cp.Minimize(cp.log_sum_exp(A*x - b) + lambda_*cp.sum_squares(x))

constraints = []

prob = cp.Problem(objective, constraints)

optimal_objective_value = prob.solve()

print(optimal_objective_value)

print(x.value)
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Convex Function

Definition

Let x ∈ X and y ∈ X . Let 0 ≤ λ ≤ 1. A function f : Rn → R is convex
over X if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

The function is called strictly convex if “≤” is replaced by “<”.
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Example: Which one is convex?
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Verifying Convexity

Any of the following conditions is necessary and sufficient for convexity:

1 By definition:

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

Function value is lower than the line.

2 First Order Convexity:

f (y) ≥ f (x) +∇f (x)T (y − x), ∀x , y ∈ X .

Tangent line is always lower than the function

3 Second Order Convexity: f is convex over X if and only if

∇2f (x) � 0 ∀x ∈ X .

Curvature is positive.
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Tangent Line Condition Illustrated
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Constrained Optimization

Equality Constrained Optimization:

minimize
x∈Rn

f (x)

subject to hj(x) = 0, j = 1, . . . , k.

Requires a function: Lagrangian function

L(x ,ν)
def
= f (x)−

k∑
j=1

νjhj(x).

ν = [ν1, . . . , νk ]: Lagrange multipliers or the dual variables.

Solution (x∗,ν∗) satisfies

∇xL(x∗,ν∗) = 0,

∇νL(x∗,ν∗) = 0.
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Example: Illustrating Lagrangian

Consider the problem

minimize
x

x1 + x2

subject to x21 + x22 = 2.

Minimizer is x = (−1,−1).
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Example: Illustrating Lagrangian
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Example: Illustrating Lagrangian
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Example: `2-minimization with constraint

minimize
x∈Rn

1

2
‖x − x0‖2, subject to Ax = y .

The Lagrangian function of the problem is

L(x ,ν) =
1

2
‖x − x0‖2 − νT (Ax − y).

The first order optimality condition requires

∇xL(x ,ν) = (x − x0)− ATν = 0

∇νL(x ,ν) = Ax − y = 0.

Multiply the first equation by A on both sides:

A(x − x0)− AATν = 0
⇒ Ax︸︷︷︸

=y

− Ax0 = AATν

⇒ y − Ax0 = AATν

⇒ (AAT )−1 (y − Ax0) = ν
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Example: `2-minimization with constraint

minimize
x∈Rn

1

2
‖x − x0‖2, subject to Ax = y .

The first order optimality condition requires

∇xL(x ,ν) = (x − x0)− ATν = 0

∇νL(x ,ν) = Ax − y = 0.

We just showed: ν = (AAT )−1 (y − Ax0). Substituting this result into
the first order optimality yields

x = x0 + ATν

= x0 + AT (AAT )−1 (y − Ax0)

Therefore, the solution is x = x0 + AT (AAT )−1(y − Ax0).
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Special Case

minimize
x∈Rn

1

2
‖x − x0‖2, subject to Ax = y .

Special case: When Ax = y is simplified to wTx = 0.

wTx = 0 is a line.
Find a point x on the line that is closest to x0.
Solution is

x = x0 + w(wTw)−1(0−wTx0)

= x0 −
(

wTx0

‖w‖2

)T

w .
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In practice ...

Use CVX to solve problem

Here is a MATLAB code

Exercise: Turn it into Python.

% MATLAB code: Use CVX to solve min ||x - x0||, s.t. Ax = y

m = 3; n = 2*m;

A = randn(m,n); xstar = randn(n,1);

y = A*xstar;

x0 = randn(n,1);

cvx_begin

variable x(n)

minimize( norm(x-x0) )

subject to

A*x == y;

cvx_end

% you may compare with the solution x0 + A’*inv(A*A’)*(y-A*x0).
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Reading List

Unconstrained Optimality Conditions

Nocedal-Wright, Numerical Optimization. (Chapter 2.1)

Boyd-Vandenberghe, Convex Optimization. (Chapter 9.1)

Convexity

Nocedal-Wright, Numerical Optimization. (Chapter 1)

Boyd-Vandenberghe, Convex Optimization. (Chapter 2 and 3)

CMU, Convex Optimization (Lecture 2 and 4)
https://www.stat.cmu.edu/~ryantibs/convexopt-F18/

Stanford CS 229 (Tutorial)
http://cs229.stanford.edu/section/cs229-cvxopt.pdf

UCSD ECE 273 (Tutorial)
http://eceweb.ucsd.edu/~gert/ECE273/CvxOptTutPaper.pdf

Constrained Optimization

Nocedal-Wright, Numerical Optimization. (Chapter 12.1)
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