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Mathematical Background
@ Lecture 1: Linear regression: A basic data analytic tool
o Lecture 2: Regularization: Constraining the solution

@ Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 3: Kernel Method
@ Kernel Method

e Dual Form

o Kernel Trick

e Algorithm
@ Examples

e Radial Basis Function (RBF)
o Regression using RBF
o Kernel Methods in Classification
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Why Another Method?

Linear regression: Pick a global model, best fit globally.
Kernel method: Pick a local model, best fit locally.

In kernel method, instead of picking a line / a quadratic equation, we
pick a kernel.

A kernel is a measure of distance between training samples.
Kernel method buys us the ability to handle nonlinearity.
Ordinary regression is based on the columns (features) of A.
Kernel method is based on the rows (samples) of A.
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Overview of the Method

Model Parameter:
e We want the model parameter € to look like: (How? Question 1)

N
0= g apx”.
n=1

@ This model expresses 0 as a combination of the samples.

@ The trainable parameters are «, where n=1,... N.

o If we can make «, local, i.e., non-zero for only a few of them, then
we can achieve our goal: localized, sample-dependent.

Predicted Value
@ The predicted value of a new sample x is

N

~ ~T

y:0 X:Zan<x7xr’>.
n=1

e We want this model to encapsulate nonlinearity. (How? Question 26)/28



Dual Form of Linear Regression

Goal: Addresses Question 1: Express 0 as
N
0= Z anpx".
n=1

We start by listing out a technical lemma:
Lemma

For any A € RN*9 y ¢ RY, and \ > 0,

(ATA+ADN1ATy = AT(AAT + 1)Ly, (1)

Proof: See Appendix.

Remark:

@ The dimensions of I on the left is d x d, on the right is N x N.
o If A =0, then the above is true only when A is invertible.
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Dual Form of Linear Regression

@ Using the Lemma, we can show that
6=(ATA+AI)'ATy  (Primal Form)
= AT(AAT + )7ty (Dual Form)

def
=

_ (X2)T aq N
= ; =D anx an E[(AAT A1)y

MA‘(’\UV\ a-{ sa mpled 8/28



N
The Kernel Trick

Goal: Addresses Question 2: Introduce nonlinearity to
- N
y=0 x= Za,,(x,x”).
n=1

The ldea:
@ Replace the inner product (x,x") by k(x,x"):

N

AT

y=0 x= Zank(x,x”).
n=1

k(-,-) is called a kernel.

A kernel is a measure of the distance between two samples x’ and x/.
(x', x/) measure distance in the ambient space, k(x', x/) measure
distance in a transformed space.

In particular, a valid kernel takes the form k(x', x/) = ($(x"), #(x))
for some nonlinear transforms ¢.
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Kernels Illustrated

R

K(x,5) = K Py o

@ A kernel typically lifts the ambient dimension to a higher one.
o For example, mapping from R? to R3
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Relationship between Kernel and Transform

Consider the following kernel k(u, v) = (u v)2 What is the transform?
@ Suppose u and v are in R2. Then (u'v)? i

2 2
= E u;vi E ujvj
i=1 Jj=1

uj
uy ujun
u = — u)=
O
uj

then (u"v)? = (¢(u), ¢(v)). 11/28



Radial Basis Function

A useful kernel is the radial basis kernel (RBF):
_yl2
k(u,v) = exp {_||u202v||} .

The corresponding nonlinear transform of RBF is infinite
dimensional. See Appendix.

|u — v||> measures the distance between two data points u and v.
o is the std dev, defining “far” and “close”.

@ RBF enforces local structure; Only a few samples are used.
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Kernel Method

Given the choice of the kernel function, we can write down the algorithm
as follows.
@ Pick a kernel function k(,-).
@ Construct a kernel matrix K € RV*N where [K]; = k(x', x/), for
i=1...,Nandj=1,...,N.
© Compute the coefficients a € RV, with

an = [(K+ M)yl

@ Estimate the predicted value for a new sample x:

N

go(x) =Y ank(x,x").

n=1

Therefore, the choice of the regression function is shifted to the choice of

the kernel.
13/28



N
Outline

Mathematical Background
@ Lecture 1: Linear regression: A basic data analytic tool
o Lecture 2: Regularization: Constraining the solution

@ Lecture 3: Kernel Method: Enabling nonlinearity

Lecture 3: Kernel Method
o Kernel Method

o Dual Form

o Kernel Trick

o Algorithm
@ Examples

e Radial Basis Function (RBF)
o Regression using RBF
o Kernel Methods in Classification
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Example

Goal: Use the kernel method to fit the data points shown as follows.

@ What is the input feature vector x"? x" = t,: The time stamps.

@ What is the output y,?
@ Which kernel to choose? Let us consider the RBF.
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Example (using RBF)

o Define the fitted function as gg(t). [Here, 8 refers to a.]
o The RBF is defined as k(t;, t;) = exp{—(t; — t;)?/20?}, for some .

@ The matrix K looks something below

(K] = exp{—(t; — t;)?/20°}.

@ K is a banded diagonal matrix. (Why?)
o The coefficient vector is o, = [(K + M) ty],.
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Example (using RBF)

@ Using the RBF, the predicted value is given by

(tnew _ fn)z

N N
go(t"™™) =D ank(t™, t)) = > ape” 22
n=1 n=1

@ Pictorially, the predicted function gg can be viewed as the linear
combination of the Gaussian kernels.

\‘j(ﬂ / predated value Uy

« = S ki
- Sampleo n= 1

/]
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Effect of o
@ Large o: Flat kernel. Over-smoothing.

@ Small o: Narrow kernel. Under-smoothing.
@ Below shows an example of the fitting and the kernel matrix K.
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Any Improvement?

e We can improve the above kernel by considering x” = [y,, t,]".

@ Define the kernel as

K(xi ) = exp {_ ((Yiz—agfjﬁ 4 (tiz_agtj)2> } :

@ This new kernel is adaptive (edge-aware).
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Any Improvement?

Here is a comparison.

1

X noisy sample
—kernel regression osl —kernel regression
X x ground truth : ground truth

X noisy sample
08
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0.4 04f

0.2 02

X XTxx K
0.2 0.2
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
without improvement with improvement

@ This idea is known as bilateral filter in the computer vision literature.

@ Can be further extended to 2D image where x" = [y, s,], for some
spatial coordinate s,,.

@ Many applications. See Reading List.
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Kernel Methods in Classification

@ The concept of lifting the data to higher dimension is useful for

s Data projected to R*2 able)
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lImage source:
https://towardsdatascience.com/understanding-the-kernel-trick-eObc6112ef78
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Kernels in Support Vector Machines

Example. RBF for SVM (We will discuss SVM later in the semester.)
o Radial Basis Function is often used in support vector machine.

@ Poor choice of parameter can lead to low training loss, but with the
risk of over-fit.

@ Under-fitted data can sometimes give better generalization.

exp(—lollx—X 11%) exp(—loollx—X'llg)
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Reading List

Kernel Method:
@ Learning from Data (Chapter 3.4)
https://work.caltech.edu/telecourse
e CMU 10701 Lecture 4 https://www.cs.cmu.edu/~tom/10701_
spll/slides/Kernels_SVM_04_7_2011-ann.pdf
o Berkeley CS 194 Lecture 7 https:
//people.eecs.berkeley.edu/~russell/classes/cs194/
e Oxford C19 Lecture 3
http://www.robots.ox.ac.uk/~az/lectures/ml/lect3.pdf
Kernel Regression in Computer Vision:
o Bilateral Filter https://people.csail.mit.edu/sparis/bf_
course/course_notes.pdf
@ Takeda and Milanfar, “Kernel regression for image processing and
reconstruction”, IEEE Trans. Image Process. (2007)
https://ieeexplore.ieee.org/document/4060955
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Appendix
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Proof of Lemma

Lemma

For any matrix A € RNxd y € RY, and \ > 0,

(ATA+ADN1ATy = AT(AAT + 1)Ly, (2)

The left hand side is solution to normal equation, which means
ATAO+)0=ATy.

Rearrange terms gives 8 = A" [1(y — A9)].

Define a = %(y — Af), thend = A" .

Substitute # = AT o into o = +(y — A8), we have

1
a=1(y- AAT ).

o Rearrange terms gives (AAT + A)a = y, which yields
a=(AAT )ty
o Substitute into @ = AT gives § = AT(AAT + \I)"ly.
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Non-Linear Transform for RBF

@ Let us consider scalar u € R.
k(u,v) = exp{—(u— v)2}
= exp{—u’} exp{2uv} exp{—v?}

oo

5 2k ykyk 5
= exp{—u‘} Z i exp{—v-}

k=0
-
21 22 23
_ 2 R 2 B K.

—exp{u}<1, TR BT 3!u,...,>

21 22 5 23 3 5
><<1,\/1!v,\/2!v,\/3!v,...,>exp{—v}

@ Sodis

21 22 23
o(x) = exp{—xz} (1, \/:x, \/;xz, \/;x?’, . ,)
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Kernels are Positive Semi-Definite
Given {xj} ' 1, construct a N x N matrix K such that

[K];j = K(X,‘,Xj) = ¢(X,’)T(D(XJ').
Claim: K is positive semi-definite.

Let z be an arbitrary vector. Then,

n N N N
ZTKZ — ZZZ’KUZJ = ZZZ;(D(X,')TCD(XJ')ZJ'

i=1 j=1 i=1 j=1
N 2
- ZZZ' (Z[q) xi) ][ (x))] ) = > (Z[‘D Xi ]k21> >
i=1 j=1 k=1

where [®(x;)]« denotes the k-th element of the vector ®(x;).
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Existence of Nonlinear Transform

We just showed that: If K(x;,x;) = ®(x;) T ®(x;) for any x1,...,xn,
then K is symmetric positive semi-definite.

The converse also holds: If K is symmetric positive semi-definite for
any xi,...,Xp, then there exist ¢ such that

K(xi,xj) = ®(x;) T &(x;).

This converse is difficult to prove.

It is called the Mercer Condition.

Kernels satisfying Mercer’s condition have ®.

You can use the condition to rule out invalid kernels.

But proving a valid kernel is still hard.
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