Basic Set Theory

In probability and statistics, we are interested in studying the likelihood of various "events", e.g. the probability we get a "Head" in a coin flip, or the probability we get a "5" in a die. In more complicated situations, we may even want to consider the co-occurrence of multiple events, e.g. "it rains" and "there is traffic", and "cell phone no battery". In order to study these situations, we need some basic ideas of sets.

• Set and Elements

So what is a set? A set is nothing but a collection of objects. Each object in a set is called an element. Mathematically, we use a capital letter to denote a set, and use a small greek letter to denote an element in a set:

\[A = \{ s_1, s_2, \ldots, s_n \} \]

the set \(s \) elements contained in this set.

To write that \(s_3 \) is an element of the set \(A \), we use a short hand notation:

\[s_3 \in A \quad \epsilon = "is \ an \ element \ of" \]
\textbf{Subset}

Very often we will not just study the entire set, but some portions of the set. For example, the set \(A \) could be all integers, and we might be interested in studying only the positive ones.

Def: \(B \) is a subset of \(A \) if every element in \(B \) is also an element in \(A \).

Mathematically, we write

\[B \subseteq A \quad \text{if for every} \]

Example:

(i) \(A = \{1, 2, 3, 4, 5, 6\} \), \(B = \{1, 3, 5\} \)

(ii) \(A = \{\text{all real numbers}\} \), \(B = \{\text{all integers}\} \)

(iii) \(A = \{x : x \geq 0\} \) i.e. the positive interval.

\[B = \{x : 1 < x < 3\}. \]

If \(B \) is a subset of \(A \) and \(B \) does not equal to \(A \), then we say

\[B \subset A \quad \text{or} \quad \text{a proper subset} \]
Example:

(i) \(A = \{1, 2, 3, 4, 5, 6\} \)
\(B = \{1, 2, 3, 4, 5, 6\} \)
\(C = \{1, 4, 5\} \).

Then \(B \subseteq A \) (of course \(A \subseteq B \) and but \(C \subset A \). \(A = B \)).

(ii) \(A = \{x : x \geq 0\} \)
\(B = \{x : x > 0\} \)

Then \(B \subset A \) because 0 is not an element of B.

When will two set be equal?
\(A = B \) if and only if \(A \subseteq B \) and \(B \subseteq A \).

Union

The union of two sets \(A \) and \(B \) is the "OR" operation of two sets.

\[A \cup B = \{x : x \in A \text{ or } x \in B\} \]
Pictorially, the union of the two sets is the total area occupied by either A or B or both:

Example

(i) $A = \{1, 3, 4\}$, $B = \{2, 3, 5\}$,
then, $A \cup B = \{1, 2, 3, 4, 5\}$

(ii) $A = \{x : 3 < x \leq 4\}$
$B = \{x : x > 3.5\}$,
then $A \cup B = \{x : x > 3\}$

If $B \subseteq A$, then $A \cup B = A$ because A is "bigger" than $B"
Intersection

The intersection of two sets A and B is the "AND" operation of two sets:

Def

$$A \cap B = \{ \xi : \xi \in A \text{ and } \xi \in B \}.$$

Example

(i) $A = \{2, 5, 7, 8\}$
$B = \{2, 7, 9, 10\}$
$A \cap B = \{2, 7\}$

(ii) $A = \{x : -2 < x < 3\}$
$B = \{x : 2 < x < 4\}$
$A \cap B = \{x : 2 \leq x < 3\}$

(iii) $A = \{x : x \geq 0\}$
$B = \{x : x \leq 0\}$
$A \cap B = \{0\}$
- **Empty Set** \emptyset
 - A set that contains no element.

 (i) if $A = \{1, 2, 3\}$, $B = \{4, 5, 6\}$, then $A \cap B = \emptyset$

 (ii) $A = \{2, 3, 4\}$, $B = \{5, 6\}$, $B = \emptyset$
 $A \cap B = \emptyset$
 $A \cup B = \{2, 3, 4\}$

 Note that \emptyset is a subset of any set.

- **Complement**
 - Anything not in the set.

 Def $A^c = \{\mathcal{S} : \mathcal{S} \notin A\}$.

- **Universal Set**
 - A set that contains everything you are interested in.

 Notation: \mathcal{S} or \mathcal{U}.
Example

(i) \(\Omega = \{ \text{all integers} \} \)
\[A = \{ \text{even integers} \} \]
Then \(A^c = \{ \text{odd integers} \} \).

(ii) \(\Omega = \{ \text{all real numbers} \} \)
\[A = \{ \text{rational numbers} \} \]
\[A^c = \{ \text{irrational numbers} \} \]

(iii) \(\Omega = \{ x : -5 \leq x \leq 5 \} \)
\[A = \{ x : x > 0 \} \quad 0.5 \leq x \leq 5 \]
\[A^c = \{ x : -5 \leq x < 0 \} \]

\underline{Difference}
Something in \(A \) but not in \(B \).

Def \(A \setminus B = \{ x : x \in A \text{ and } x \notin B \} \)

Example:

(i) \(A = \{ 1, 2, 3, 4 \} \)
\[B = \{ 2, 3, 7 \} \]
\[A \setminus B = \{ 1, 4 \} \]

(ii) \(A = \{ x : x > 0 \} \) , \(B = \{ x : x < 2 \} \)
\[A \setminus B = \{ x : 0 < x \leq 2 \} \]
Disjoint

Def Two sets A and B are disjoint if $A \cap B = \emptyset$.

If we have many sets $A_1, A_2, ..., A_n$, we say that \{\(A_1, \ldots, A_n\)\} is disjoint if $A_i \cap A_j = \emptyset$ for any pair of i, j where $i \neq j$.

Example:

\[
\begin{align*}
A &= \{1, 2, 3\}, \\
B &= \{4, 5\}, \\
C &= \{6, 7\}, \\
\end{align*}
\]

then $A \cap B = \emptyset$, $A \cap C = \emptyset$, $B \cap C = \emptyset$.

So \{\(A, B, C\)\} is disjoint.

Partition

Def A collection of sets \{\(A_1, A_2, \ldots, A_n\)\} is a partition of a universal set Ω if

1. \{\(A_1, \ldots, A_n\)\} is disjoint
2. $A_1 \cup A_2 \cup \ldots \cup A_n = \Omega$.

Intuitively, (1) says every part in this collection is isolated by itself. There is no overlap. (2) says that by putting them together you will have the entire set.
Example

(i) \[A_1 = \{ \text{all even integers} \} \quad \mathbb{Z} = \{ \text{all integers} \} \]
\[A_2 = \{ \text{all odd integers} \} \]
Then \(\{ A_1, A_2 \} \) is a partition of \(\mathbb{Z} \).

(ii) \[A_1 = \{ x : \ 0 \leq x \leq 5 \} \]
\[A_2 = \{ x : \ 5 \leq x \leq 10 \} \quad \mathbb{Z} = \{ x : \ x \geq 0 \} \]
\[A_3 = \{ x : \ x > 10 \} \]
\(\{ A_1, A_2, A_3 \} \) does not form a partition of \(\mathbb{Z} \) because \(A_1 \cap A_2 = \{ 5 \} \neq \emptyset \).

Properties of Set Operations

* **Commutative**: "order does not matter", or "symmetrical"
 \[A \cup B = B \cup A \]
 \[A \cap B = B \cap A \]

* **Associative**: "multiple union or intersect"
 \[A \cup (B \cup C) = (A \cup B) \cup C \]
 \[A \cap (B \cap C) = (A \cap B) \cap C \]

* **Distributive**: "mix of union & intersection"
 \[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]
 \[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \]
De Morgan's Law

\[(A \cap B)^c = A^c \cup B^c\]
\[(A \cup B)^c = A^c \cap B^c\]

Example

\[A = \{x : 0 \leq x \leq 1\}\]
\[B = \{x : 2 \leq x \leq 3\}\]
\[\Omega = \{x : x \geq 0\}\]

\[(A \cap B)^c = A^c \cup B^c\]
\[= \{x : x > 1\} \cup \{x : x < 2 \text{ or } x > 3\}\]
\[= \{x : x \geq 0\}\]

\[(A \cup B)^c = A^c \cap B^c\]
\[= \{x : 1 < x < 2\} \cap \{x : x > 3\}\]