Instructor: Prof. Stanley H. Chan

Video 8

Fall 2017

Exercise 1.

Let

$$f_{X,Y}(x,y) = \begin{cases} ce^{-x}e^{-y}, & \text{if } 0 \le y \le x < \infty, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find c.
- (b) Find $f_X(x)$ and $f_Y(y)$.
- (c) Find $\mathbb{E}[X]$ and $\mathbb{E}[Y]$, Var[X] and Var[Y].
- (d) Find $\mathbb{E}[XY]$, Cov(X, Y) and ρ .

Exercise 2.

In class we have used the Cauchy-Schwarz inequality to show that $-1 \le \rho \le 1$. This exercise asks you to prove the Cauchy-Schwarz inequality:

$$(\mathbb{E}[XY])^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2].$$

Hint: Consider the expectation $\mathbb{E}[(tX+Y)^2]$. Note that it is a quadratic equation in t and $\mathbb{E}[(tX+Y)^2] \ge 0$ for all t. Consider the discriminant of this quadratic equation.

Exercise 3.

Let $\Theta \sim \text{Uniform}[0, 2\pi]$.

- (a) If $X = \cos \Theta$, $Y = \sin \Theta$. Are X and Y uncorrelated?
- (b) If $X = \cos(\Theta/4)$, $Y = \sin(\Theta/4)$. Are X and Y uncorrelated?

Exercise 4.

Let X and Y have a joint PDF

$$f_{X,Y}(x,y) = c(x+y),$$

for $0 \le x \le 1$ and $0 \le y \le 1$.

- (a) Find c, $f_X(x)$, $f_Y(y)$, and $\mathbb{E}[Y]$.
- (b) Find $f_{Y|X}(y|x)$.
- (c) Find $\mathbb{P}[Y > X | X > 1/2]$.
- (d) Find $\mathbb{E}[Y|X=x]$.
- (e) Find $\mathbb{E}[\mathbb{E}[Y|X]]$, and compare with the $\mathbb{E}[Y]$ computed in (a).

Exercise 5.

Use Law of Total Expectation to compute the followings:

- 1. $\mathbb{E}[\sin(X+Y)]$, where $X \sim \mathcal{N}(0,1)$, and $Y \mid X \sim \text{Uniform}[x-\pi,x+\pi]$
- 2. $\mathbb{P}[Y < y]$, where $X \sim \text{Uniform}[0, 1]$, and $Y \mid X \sim \text{Exponential}(x)$
- 3. $\mathbb{E}[Xe^Y]$, where $X \sim \text{Uniform}[-1,1]$, and $Y \mid X \sim \mathcal{N}(0,x^2)$