

Video 10

Fall 2017

Exercise 1.

A Laplace random variable has a PDF

$$f_X(x) = \frac{\lambda}{2} e^{-\lambda |x|}, \text{ where } \lambda > 0,$$

and the variance is $Var[X] = \frac{2}{\lambda^2}$. Let X_1, \dots, X_{500} be a sequence of i.i.d. Laplace random variables. Let

$$M_{500} = \frac{X_1 + \ldots + X_{500}}{500}.$$

- (a) Find $\mathbb{E}[X]$. Express your answer in terms of λ .
- (b) Let $\lambda = 10$. Find, using Chebyshev inequality, a lower bound of

$$\mathbb{P}[-0.1 \le M_{500} \le 0.1].$$

(c) Let $\lambda = 10$. Find, using Central Limit Theorem, the probability

$$\mathbb{P}\left[-0.1 \le M_{500} \le 0.1\right].$$

You may leave your answer in terms of $\Phi(\cdot)$ function.

Exercise 2.

Let X_1, \ldots, X_n be a sequence of iid random variables such that $X_i = \pm 1$ with equal probability. Let

$$Y_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i.$$

Prove the Central Limit Theorem for this particular sequence of random variables by showing that

- (a) $\mathbb{E}[Y_n] = 0$, $Var[Y_n] = 1$.
- (b) The moment generating function of Y_n is $M_{Y_n}(s) \to e^{\frac{s^2}{2}}$ as $n \to \infty$.

Exercise 3.

Let X_1, \ldots, X_N be a sequence of i.i.d. random variables with mean and variance

$$\mathbb{E}[X_n] = \mu$$
, and $\operatorname{Var}[X_n] = \sigma^2$, $n = 1, \dots, N$.

The distribution of X_n is, however, unknown. Let

$$M_N = \frac{1}{N} \sum_{n=1}^{N} X_n.$$

Use Central Limit Theorem to estimate the probability $\mathbb{P}[M_N > 2\mu]$

Exercise 4.

In class we derived Chebyshev inequality for the case of known variance σ^2 . In this exercise we will prove a variant of the Chebyshev when the variance σ^2 is unknown but X is bounded between $a \leq X \leq b$.

- (a) Let $\gamma \in \mathbb{R}$. Find a γ that minimizes $\mathbb{E}[(X \gamma)^2]$. Hence, show that $\mathbb{E}[(X \gamma)^2] \ge \text{Var}[X]$ for any γ .
- (b) Let $\gamma = (a+b)/2$. Show that

$$\mathbb{E}[(X - \gamma)^2] = \mathbb{E}[(X - a)(X - b)] + \frac{(b - a)^2}{4}.$$

- (c) From (a) and (b), show that $Var[X] \leq \frac{(b-a)^2}{4}$.
- (d) Show that for any $\varepsilon > 0$,

$$\mathbb{P}[|X - \mu| > \varepsilon] \le \frac{(b - a)^2}{4\varepsilon^2}.$$

Exercise 5.

Let X_1, \ldots, X_N be a sequence of i.i.d. Bernoulli random variables with $\mathbb{P}[X_n = 1] = \theta$. Suppose that we have observed x_1, \ldots, x_N .

(a) Show that the PMF of X_n is $p_{X_n}(x_n \mid \theta) = \theta^{x_n}(1-\theta)^{1-x_n}$. Hence, find the joint PMF

$$p_{X_1,\ldots,X_N}(x_1,\ldots,x_N).$$

(b) Find the maximum likelihood estimate $\widehat{\theta}$, i.e.,

$$\widehat{\theta}_{\mathrm{ML}} = \underset{\theta}{\operatorname{argmax}} \log p_{X_1, \dots, X_N}(x_1, \dots, x_N).$$

Express your answer in terms of x_1, \ldots, x_N .

Exercise 6.

Let $Y_n = \theta + W_n$ be the output of a noisy channel where the input is a scalar θ and $W_n \sim \mathcal{N}(0,1)$ is an i.i.d. Gaussian noise. Suppose that we have observed y_1, \ldots, y_N .

- (a) Express the PDF of Y_n in terms of θ and y_n . Hence, find the joint PDF of Y_1, \ldots, Y_N .
- (b) Find the maximum likelihood estimate $\widehat{\theta}_{\mathrm{ML}}$. Express your answer in terms of y_1, \ldots, y_N .