ECE 302: Probabilistic Methods in Electrical and Computer Engineering

Fall 2016

Instructor: Prof. Stanley H. Chan

Mid Term 1

Fall 2016

Name:			P	UID:	
Please copy and write the following staten	nent:				
I certify that I have neither	given nor	receii	ed unauthorized aid	on this exam.	
(Please copy and write the above statemen	nt.)				
					(Signature)
Problem 1. (25 POINTS) Determine whether the following statement of the statement is the statement of the statement in the statement is a statement in the statement in the statement is a statement in the statement in the statement is a statement in the statement in the statement is a statement in the statement in the statement is a statement in the statement i	is false.) C	ircle y	our answer. No part		
	TRUE	or	FALSE.		
2. For any $0 , \sum_{k=1}^{\infty} p(1-p)^{k-1}$	$^{1}=p.$				
	TRUE	or	FALSE.		
3. Let A and B be two events. If A are and B are disjoint, then A and B materials are disjoint.				are disjoint. H	Iowever, if A

TRUE or FALSE.

4. Let $X \sim \text{Binomial}(n, p)$. Then $\mathbb{E}[(2X - 1)^2] = 4n(n - 1)p^2$.

TRUE or FALSE.

5. Assume that $\mathbb{P}[A] = 0.3$, $\mathbb{P}[B] = 0.2$ and $\mathbb{P}[C] = 0.1$. It is known that A, B and C are independent, and $A \cap B = \emptyset$. Then the conditional probability $\mathbb{P}[A \cup B \mid C] = 0.5$.

> TRUE orFALSE.

Problem 2. (25 POINTS)

Multiple Choice. Please circle your answer.

- 1. Assume that $\mathbb{P}[A] > 0$, $\mathbb{P}[B] > 0$ and $\mathbb{P}[C] > 0$. Then, $\mathbb{P}[A \cap B \cap C] =$
 - (a) $\mathbb{P}[A|B] \mathbb{P}[B|C] \mathbb{P}[C|A]$
 - (b) $\mathbb{P}[B] \mathbb{P}[A|B] \mathbb{P}[C|A \cap B]$
 - (c) $\mathbb{P}[A|B] \mathbb{P}[B] \mathbb{P}[A] \mathbb{P}[C|A \cap B]$
 - (d) $\mathbb{P}[C|B \cap A] \mathbb{P}[B|A] \mathbb{P}[A]$
 - (e) (a) and (b)
 - (f) (a) and (b)
 - (g) (b) and (c)
 - (h) (b) and (d)
 - (i) (a) and (b) and (d)
 - (j) All of the above
 - (k) None of the above
- 2. Let $p_X(k) = c/2^k$ for k = 2, 3, ... Then, c =
 - (a) 1
 - (b) 2
 - (c) 4
 - (d) $\frac{1}{2}$
 - (e) $\frac{1}{4}$
 - (f) $\frac{1}{8}$

 - (g) $\frac{2}{3}$ (h) $\frac{3}{2}$
 - (i) $\frac{3}{4}$
 - (j) $\frac{4}{3}$

3.	A company makes three types of pens: Type A, Type B and Type C. Among all the pens, 40% are Type A, 30% are Type B, and 30% are Type C. The probability that Type A has defect is 0.2, that Type B has defect is 0.1, and that Type C has defect is 0.1. Suppose that you get a pen and see that it is defective. Find the probability that the pen was Type A.
	(a) 0.4 (b) 0.2

(c) 0.1

(h) 0.04

(i) 0.02

(j) None of the above

4. Throw a dice twice. Let X be the absolute difference in the number of dots facing up. Find $\mathbb{P}[X \leq 2]$.

(a) 1/8

(b) 1/6

(c) 1/4

(d) 1/3

(e) 1/2

(f) 3/4

(g) 2/3

(h) 5/8

(i) 7/12

(j) None of the above

5. Let $p_X(k) = \sin\left(\frac{\pi}{2}k\right)$ for k = 0, 1, 2, 3. The expected value $\mathbb{E}[X]$ is

(a) 0

(b) 1

(c) 2

(d) $\frac{1}{4}$

(e) $\frac{1}{2}$

(f) -1

(g) -2

(h) $-\frac{1}{4}$

(i) $-\frac{1}{2}$

(j) None of the above

Problem 3. (30 POINTS)

Let A and B be two events such that $\mathbb{P}[A \mid B] = 0.4$, $\mathbb{P}[B \mid A] = 0.3$ and $\mathbb{P}[A] = 0.5$.

(a) (5 points) State clearly the definition of two events A and B being independent.

(b) (10 points) Find $\mathbb{P}[A \cap B]$ and $\mathbb{P}[A \cup B]$.

(c) (7 points) Find $\mathbb{P}[A \cup B^c]$ and $\mathbb{P}[A^c \cup B]$.

(d) (8 points) Find $\mathbb{P}[A \cup B^c \mid A^c \cup B]$, i.e., the conditional probability of $A \cup B^c$ given $A^c \cup B$.

Problem 4. (20 POINTS)

Consider three random variables $X \sim \text{Bernoulli}(p)$, $Z_1 \sim \text{Poisson}(\lambda_1)$, and $Z_2 \sim \text{Poisson}(\lambda_2)$. Let Y be a random variable such that

$$Y = \begin{cases} Z_1, & \text{if} \quad X = 1, \\ Z_2, & \text{if} \quad X = 0. \end{cases}$$

(a) (10 points) Find the PMF of Y.

(b) (10 points) Find the expectation of Y.

Useful Identities

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \ldots = \frac{1}{1-r}$$

$$1-r$$
 $n(n+1)$

$$1. \sum_{k=1}^{\infty} kr^{k-1} = 1 + 2r + 3r^2 + \dots = \frac{1}{(1-r)^2}$$

2.
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

1.
$$\sum_{k=0}^{\infty} r^k = 1 + r + r^2 + \dots = \frac{1}{1-r}$$
2.
$$\sum_{k=1}^{\infty} k = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
3.
$$\sum_{k=1}^{\infty} k^2 = 1^2 + 2^2 + 3^3 + \dots + n^2 = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$

3.
$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots$$
 6. $(a+b)^n = \sum_{k=0}^n {n \choose k} a^k b^{n-k}$

6.
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Common Distributions

Bernoulli
$$\mathbb{P}[X=1]=p$$
 $\mathbb{E}[X]=p$ $\operatorname{Var}[X]=p(1-p)$ $M_X(s)=1-p+pe^s$ Binomial $p_X(k)=\binom{n}{k}p^k(1-p)^{n-k}$ $\mathbb{E}[X]=np$ $\operatorname{Var}[X]=np(1-p)$ $M_X(s)=(1-p+pe^s)^n$

Geometric
$$p_X(k) = p(1-p)^{k-1}$$
 $\mathbb{E}[X] = \frac{1}{p}$ $\operatorname{Var}[X] = \frac{1-p}{p^2}$ $M_X(s) = \frac{pe^s}{1-(1-p)e^s}$ Poisson $p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $\mathbb{E}[X] = \lambda$ $\operatorname{Var}[X] = \lambda$ $M_X(s) = e^{\lambda(e^s-1)}$ Gaussian $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\mathbb{E}[X] = \mu$ $\operatorname{Var}[X] = \sigma^2$ $M_X(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}$

Poisson
$$p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$
 $\mathbb{E}[X] = \lambda$ $\operatorname{Var}[X] = \lambda$ $M_X(s) = e^{\lambda(e^s - 1)}$

Gaussian
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 $\mathbb{E}[X] = \mu$ $\operatorname{Var}[X] = \sigma^2$ $M_X(s) = e^{\mu s + \frac{\sigma^2 s^2}{2}}$ Exponential $f_X(x) = \lambda \exp\{-\lambda x\}$ $\mathbb{E}[X] = \frac{1}{\lambda}$ $\operatorname{Var}[X] = \frac{1}{\lambda^2}$ $M_X(s) = \frac{\lambda}{\lambda - s}$

Exponential
$$f_X(x) = \lambda \exp\{-\lambda x\}$$
 $\mathbb{E}[X] = \frac{1}{\lambda}$ $\operatorname{Var}[X] = \frac{1}{\lambda^2}$ $M_X(s) = \frac{\lambda}{\lambda - s}$

Uniform
$$f_X(x) = \frac{1}{b-a}$$
 $\mathbb{E}[X] = \frac{a+b}{2}$ $\text{Var}[X] = \frac{(b-a)^2}{12}$ $M_X(s) = \frac{e^{sb} - e^{sa}}{s(b-a)}$

Fourier Transform Table

$$f(t) \longleftrightarrow F(w)$$
 $f(t) \longleftrightarrow F(w)$

1.
$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+iw}, \ a > 0$$
 10. $\operatorname{sinc}^2(\frac{Wt}{2}) \longleftrightarrow \frac{2\pi}{W}\Delta(\frac{w}{2W})$

1.
$$e^{-at}u(t) \longleftrightarrow \frac{1}{a+jw}, \ a > 0$$
 10. $\operatorname{sinc}^2(\frac{Wt}{2}) \longleftrightarrow \frac{2\pi}{W}\Delta(\frac{w}{2W})$
2. $e^{at}u(-t) \longleftrightarrow \frac{1}{a-jw}, \ a > 0$ 11. $e^{-at}\sin(w_0t)u(t) \longleftrightarrow \frac{w_0}{(a+jw)^2+w_0^2}, \ a > 0$

3.
$$e^{-a|t|} \longleftrightarrow \frac{2a}{a^2+w^2}, \ a>0$$
 12. $e^{-at}\cos(w_0t)u(t) \longleftrightarrow \frac{a+jw}{(a+iw)^2+w_0^2}, \ a>0$

3.
$$e^{-a|t|} \longleftrightarrow \frac{2a}{a^2+w^2}, \ a > 0$$
 12. $e^{-at} \cos(w_0 t) u(t) \longleftrightarrow \frac{a+jw}{(a+jw)^2+w_0^2}, \ a > 0$ 4. $\frac{a^2}{a^2+t^2} \longleftrightarrow \pi a e^{-a|w|}, \ a > 0$ 13. $e^{-\frac{t^2}{2\sigma^2}} \longleftrightarrow \sqrt{2\pi} \sigma e^{-\frac{\sigma^2 w^2}{2}}$

5.
$$te^{-at}u(t) \longleftrightarrow \frac{1}{(a+jw)^2}, \ a > 0$$
 14. $\delta(t) \longleftrightarrow 1$

6.
$$t^n e^{-at} u(t) \longleftrightarrow \frac{n!}{(a+jw)^{n+1}}, \ a > 0$$
 15. $1 \longleftrightarrow 2\pi \delta(w)$

7.
$$\operatorname{rect}(\frac{t}{\tau}) \longleftrightarrow \tau \operatorname{sinc}(\frac{w\tau}{2})$$
 16. $\delta(t - t_0) \longleftrightarrow e^{-jwt_0}$

8.
$$\operatorname{sinc}(Wt) \longleftrightarrow \frac{\pi}{W} \operatorname{rect}(\frac{w}{2W})$$
 17. $e^{jw_0t} \longleftrightarrow 2\pi\delta(w-w_0)$

9.
$$\Delta(\frac{t}{\tau}) \longleftrightarrow \frac{\tau}{2} \operatorname{sinc}^2(\frac{w\tau}{4})$$

Some definitions:

$$\operatorname{sinc}(t) = \frac{\sin(t)}{t} \qquad \operatorname{rect}(t) = \begin{cases} 1, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases} \qquad \Delta(t) = \begin{cases} 1 - 2|t|, & -0.5 \le t \le 0.5, \\ 0, & \text{otherwise.} \end{cases}$$

Basic Trigonometry

$$e^{j\theta} = \cos\theta + j\sin\theta$$
, $\sin 2\theta = 2\sin\theta\cos\theta$, $\cos 2\theta = 2\cos^2\theta - 1$.

$$\cos A \cos B = \frac{1}{2}(\cos(A+B) + \cos(A-B)) \quad \sin A \sin B = -\frac{1}{2}(\cos(A+B) - \cos(A-B))$$
$$\sin A \cos B = \frac{1}{2}(\sin(A+B) + \sin(A-B)) \quad \cos A \sin B = \frac{1}{2}(\sin(A+B) - \sin(A-B))$$