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Jensen’s inequality

Theorem (Jensen's Inequality)

Let X be a random variable, and let g : R — R be a convex function.
Then

E[g(X)] > g(E[X]). (1)

Where does it come from?
Var[X] = E[X?] — E[X]?.

Since Var[X] > 0 for any X, it follows that

EX?] > EX]. (2)
N—_—— N——
=E[g(X)] =g(E[X])
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Convex functions

Definition
A function f is convex if

F(Ax + (1= A)y) < Af(x) + (L= Nf(y), (3)

forany 0 < A < 1.

convex concave neither

1

Y
Figure: Illustration of a convex function, a concave function, and a function that
is neither convex or concave.
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Convex functions

For 1D functions, they are convex if

f"(x) > 0. (4)

Example. The following functions are convex/concave:

e f(x) = logx is concave, because f'(x) = L and f”(x) = —% < 0 for
all x.

e f(x) = x2 is convex, because f'(x) = 2x and f”(x) = 2 which is
positive.

e f(x) = e X is convex, because f'(x) = —e ¥ and f"(x) = e > 0.

Convexity for Jensen's inequality

F(Ax+ (1= A)y) < A(x) + (1= A)f(y), (5)

=f(E[X]) =E[f(X)]
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Proof of Jensen’s inequality

Figure: Proof of Jensen's inequality

Proof. Consider L(X) as defined above. Since g is convex, g(X) > L(X)
for all X. Therefore,

Elg(X)] = E[L(X)] = E[aX + b] = aE[X] + b = L(E[X]) = g(E[X]),
where the last equality holds because L is a tangent line evaluated at E[X]

which should coincide with g(E[X]). O
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Remark for Proof

What are (a, b) in the proof? By Taylor expansion, we can show that

g(X) ~ g(E[X]) + g (E[X])(X — E[X]) = L(X).

Therefore, if we want to be precise, then a = g/(E[X]) and
b= g(E[X]) — g'(E[X])E[X].
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Summary

Theorem (Jensen's Inequality)

Let X be a random variable, and let g : R — R be a convex function.
Then

Elg(X)] = g(E[X]).

(6)

Example. By Jensen's inequality, we have that
(2) E[X?] > E[X]?

(b) E [x] > gxg

(c) Ellog X] < log E[X]
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Questions?

8/8



