ECE 302: Chapter 06 Extra: Classification

Fall 2018

Prof Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Purdue University
Classification — A Primer
Terminologies

Definition (Likelihood, Prior, Posterior)
Let \(X \in \mathbb{R}^d \) be a random variable. Let \(Y \in \{1, 2\} \) be the class. The likelihood of \(X \) given \(Y \)
is

\[
f_{X|Y}(x|i) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_i|}} \exp \left\{ -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right\}. \tag{1}
\]

The prior of \(Y \) is \(f_Y(i) = \pi_i \).

The posterior of \(Y \) given \(X \) is

\[
f_{Y|X}(i|x) = \frac{f_{X|Y}(x|i)f_Y(i)}{f_X(x)} \propto \frac{1}{\sqrt{(2\pi)^d |\Sigma_i|}} \exp \left\{ -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right\} \cdot \pi_i. \tag{2}
\]
Definition (MAP Decision)
The maximum-a-posterior decision is

\[f_{Y|x}(1|x) \geq_{C_2} c_{1} f_{Y|x}(2|x). \] \hspace{1cm} (3)

Why this?
MAP Decision

Theorem (MAP rule)

For multidimensional Gaussian, the decision is simplified to

\[
g_1(x) \gtrless_{C_2}^{C_1} g_2(x),
\]

where

\[
g_1(x) = \frac{1}{2}(x - \mu_1)^T \Sigma_1^{-1}(x - \mu_1) + \frac{1}{2} \log |\Sigma_1| - \log \pi_1,
\]

\[
g_2(x) = \frac{1}{2}(x - \mu_2)^T \Sigma_2^{-1}(x - \mu_2) + \frac{1}{2} \log |\Sigma_2| - \log \pi_2.
\]

Why Care?
Simplified Case

What if $\Sigma_i = \sigma^2 I$?

Corollary (Simplified Case)

If $\Sigma_i = \sigma^2 I$, the MAP decision is reduced to

$$g_1(x) \preceq_{\frac{C_1}{C_2}} g_2(x),$$

where

$$g_1(x) = \left(\frac{\mu_1}{\sigma^2} \right)^T x - \left(\frac{\|\mu_1\|^2}{2\sigma^2} + \log \pi_1 \right)$$

$$g_2(x) = \left(\frac{\mu_2}{\sigma^2} \right)^T x - \left(\frac{\|\mu_2\|^2}{2\sigma^2} + \log \pi_2 \right).$$
Simplifying the rules

Just need to check this:

\[g_1(x) - g_2(x) \geq_{\frac{C_1}{C_2}} 0. \]

and what is \(g_1(x) - g_2(x) \)?

Corollary

\[g_1(x) - g_2(x) = w^T (x - x_0), \geq_0 \] \hspace{1cm} (8)

where

\[w = \frac{\mu_1 - \mu_2}{\sigma^2} \]

\[x_0 = \frac{\mu_1 + \mu_2}{2} + \sigma^2 \left(\log \frac{\pi_1}{\pi_2} \right) \frac{\mu_1 - \mu_2}{\|\mu_1 - \mu_2\|^2}. \] \hspace{1cm} (9)
Geometry!

\[w^T(x - x_0) < 0 \quad \text{and} \quad w^T(x - x_0) > 0 \]
Adversarial Attack — A Primer
Adversarial Attack

z_0 is the original correct input. Assume $\mathbf{w}^T(z_0 - x_0) > 0$.

Definition

Adversarial attack is a perturbation of z_0 such that

$$\minimize_{\mathbf{z}} \|\mathbf{z} - \mathbf{z}_0\|^2, \quad \text{subject to} \quad \mathbf{w}^T(\mathbf{z} - \mathbf{x}_0) \leq 0. \quad (10)$$

Why works?
Geometry of Attack

$Z_0 + \eta w$
Minimum Perturbation Distance

\[\lambda^* = \frac{w^T(x_0 + w_0)}{\|w\|_2} \]
Example
ECE 302: Chapter 06: Limit Theorem

Fall 2018
Prof Stanley Chan

School of Electrical and Computer Engineering
Purdue University

Purdue
1. Introduction
Statistics is for BIG data
Let X_1, \ldots, X_N be a sequence of i.i.d. random variables.
For example,

- X_n is a state (+1 or -1) of a magnet
- X_n is the energy state of a molecule
- X_n is the instantaneous frequency of the current
- X_n is the rating of a movie

You are usually not interested in these individual X_n's.

Let M_N be the **sample mean**:

$$ M_N = \frac{1}{N} \sum_{n=1}^{N} X_n. $$

- You care about M_N because you want to get the macro-perspective of the system.
- You care about M_N when N is very large, i.e., $N \rightarrow \infty$.
As $N \to \infty$:

Two questions to ask:

- Where does M_N converge to? **Law of Large Number**.
- What is the distribution of M_N? **Central Limit Theorem**.