2. Probability Model
What is Probability?

- It is a **number**.
- Always between **0** and **1**.
- Always the probability of an **event**.

Example. The probability of getting a Head when tossing a coin:

\[P(\text{"H"}) = \frac{\#}{2} = \frac{1}{2} \]
Three Elements of a Probability Model

1. Sample Space
2. Event
3. Probability Law
Sample Space

Definition (Sample Space)

A sample space Ω is the collection of all possible outcomes.

We denote ω as an element in Ω.

Example.

- Coin flip:
 $\Omega = \{ H, T \}$

- Throw a dice:
 $\Omega = \{ 1, \ldots, 6 \}$

- Waiting time for a bus in West Lafayette:
 $\Omega = \{ t \mid 0 \leq t \leq 30 \text{min} \}$
Event

Definition (Event)
An event F is a subset in the sample space Ω.

Outcome VS Event:
- Single element
- Collection of outcomes

Example. Throw a dice. Let $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- $F_1 = \{\text{even numbers}\} = \{2, 4, 6\}$.
- $F_2 = \{\text{less than 3}\} = \{1, 2\}$.

Example. Wait a bus. Let $\Omega = \{0 \leq t \leq 30\}$.
- $F_1 = \{0 \leq t < 10\}$
- $F_2 = \{0 \leq t < 5\} \cup \{20 < t \leq 30\}$.
Event Space

Definition (Event Space)

The collection of all possible events is called the Event Space or \(\sigma \)-field (not needed) denoted as \(\mathcal{F} \). \(\mathcal{F} \) satisfies the following two properties:

- If \(F \in \mathcal{F} \), then \(F^c \in \mathcal{F} \).

 \[F = \{1, 2\} \quad F^c = \{3, 4, 5, 6\} \]

- If \(F_1, F_2, \ldots \in \mathcal{F} \), then \(F_i \cap F_j \in \mathcal{F} \) and \(F_i \cup F_j \in \mathcal{F} \).

 \[F_1 = \{1, 2\} \quad F_1 \cap F_2 = \{2\} \]
 \[F_2 = \{2, 3\} \quad F_1 \cup F_2 = \{1, 2, 3\} \]

Example. \(\Omega = \{H, T\} \), the event space is \(\{\emptyset, H, T, \Omega\} \).
Probability Law

Definition

A **probability law** is a function \(P : \mathcal{F} \to [0, 1] \) that maps an event \(A \) to a real number in \([0, 1]\). The function must satisfy three axioms known as **Probability Axioms**.

I. Non-negativity:

\[
P(A) \geq 0, \quad \text{for any } A \in \mathcal{F}
\]

II. Normalization:

\[
P(\Omega) = 1.
\]
III. Additivity:

For any disjoint subsets \(\{A_1, A_2, \ldots \} \), it holds that

\[
P \left[\bigcup_{n=1}^{\infty} A_n \right] = \sum_{n=1}^{\infty} P[A_n].
\]

\[
P(A_1 \cup A_2) = P(A_1) + P(A_2).
\]
Properties of Probability

1. \(P(A^c) = 1 - P(A). \)
 \[A = \{1, 2, 3\} \]
 \[A^c = \{4, 5, 6\} \]

2. For any \(A \subseteq \Omega, P[A] \leq 1. \)

3. \(P(\emptyset) = 0. \)
Properties of Probability

- For any A and B,

$$P[A \cup B] = P[A] + P[B] - P[A \cap B].$$