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Abstract 
In this paper we present our experience in developing 

an optimizing compiler for general purpose computation 
on graphics processing units (GPGPU) based on the Cetus 
compiler framework. The input to our compiler is a naïve 
GPU kernel procedure, which is functionally correct but 
without any consideration for performance optimization. 
Our compiler applies a set of optimization techniques to 
the naive kernel and generates the optimized GPU kernel. 
The implementation of our compiler is facilitated with the 
Cetus infrastructure. The code transformation in the Cetus 
compiler framework is called a pass. We classify all the 
passes used in our work into two categories: functional 
passes and optimization passes. The functional passes 
translate input kernels into desired intermediate 
representation, which can clearly represent memory 
access patterns and thread configurations. The CUDA 
language support pass is derived from MCUDA. A series 
of optimization passes improve the performance of the 
kernels by adapting the kernels to the GPGPU 
architecture. Our experiments show that the optimized 
code achieves very high performance, either superior or 
very close to highly fine-tuned libraries. 

1. INTRODUCTION 

The high computational power and memory access 
bandwidth of state-of-art graphics processing units (GPU) 
have made them appealing for high performance 
computing. However, it's big challenge to develop high 
performance GPGPU code as application developers need 
to know how to utilize the GPU hardware resources 
effectively. We present our GPGPU compiler as a solution, 
which takes naive GPU kernels as inputs and generates 
optimized kernels to relieve the application developers of 
low-level hardware-specific performance optimizations. 

State-of-the-art GPUs use many-core architectures. The 
on-chip processor cores are organized in a hierarchical 
manner. A GPU has a number of streaming 
multiprocessors (SMs) (NVIDIA GPUs) or SIMD engines 
(AMD GPUs). Each SM/SIMD engine contains multiple 
streaming processors / cores. Threads in GPUs follow the 
single-program multiple-data (SPMD) program execution 
model and they are organized in thread blocks/groups. 
Within a thread block/group, the threads can communicate 
data through fast on-chip shared memory. Each 
block/group has multiple warps/wavefronts, in which the 
threads are executed in the single-instruction multiple-data 
(SIMD) manner. Every SM or SIMD has a number of 
registers, which is private to each thread, shared memory, 

which is visible to a thread block/group, and global 
memory, which is used by all the threads. To full utilize 
the resource on GPUs, two issues need to be considered: (1) 
how to parallelize an application into concurrent work 
items and distribute the workloads in a hierarchy of thread 
blocks and threads; and (2) how to efficiently utilize the 
GPU memory hierarchy, given its dominant impact on 
performance. We develop our compiler based on Cetus [1] 
to address these two issues. 

Our compiler achieves the following goals. (1) It 
enables the application developers to focus on algorithm-
level issues rather than low-level hardware-specific 
performance optimizations. (2) It includes a set of new 
compiler optimization techniques to improve memory 
access bandwidth, to effectively leverage on-chip memory 
resource (register file and shared memory) for data sharing, 
and to eliminate partition conflicts. (3) It is highly 
effective and the programs optimized by our compiler 
achieve very high performance, often superior to manually 
optimized codes. 

2. IMPLEMENTATION 

Our compiler leverages MCUDA [2] which adds 
CUDA language support to Cetus [1] and translates the 
kernel code into intermediate representation with CUDA 
support. Our compiler adds additional passes to translate 
the intermediate representation to our GPU intermediate 
representation and applies GPU optimization passes on the 
kernel. We classify the passes into two categories: the 
functional passes and GPU optimization passes. The 
functional passes do not improve the performance of the 
kernels. Instead, they are needed for the preprocessor, 
GPU optimization passes and the postprocessor. As shown 
in the Figure 1, the preprocessor includes multiple 
functional passes which translate the CUDA intermediate 
representation to the GPU intermediate representation. The 
GPU intermediate representation includes the information 
on memory access patterns, loop structures, thread 
configurations and thread block dimensions. Then the 
compiler applies 
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kernels. Instead, they are needed for the preprocessor, 
GPU optimization passes and the postprocessor. As shown 
in the Figure 1, the preprocessor includes multiple 
functional passes which translate the CUDA intermediate 
representation to the GPU intermediate representation. The 
GPU intermediate representation includes the information 
on memory access patterns, loop structures, thread 
configurations and thread block dimensions. Then the 
compiler applies five GPU optimization passes on the 
GPU intermediate representation. Finally the postprocessor 
translates the GPU intermediate representation back to the 
CUDA intermediate representation and outputs the high 
performance kernels in either CUDA or OpenCL. 

The functional passes are summarized as follows. We 
use matrix vector multiplication (MV) as a case study to 
illustrate the compilation steps. 

(1) OpenCL to CUDA pass. Since our compiler uses the 
intermediate representation following the CUDA style, we 
convert the OpenCL code into CUDA code in this pass to 
facilitate code optimizations. Because the naive version of 
MV is CUDA code, this step is bypassed. 

(2) Predefined pass. To simplify the compiler, we use 
unified variables to express the internal variables of 
CUDA or OpenCL. For example, 'idx' in the compiler is 
the same as (blockIdx.x*blockDim.x + threadIdx.x) in the 
CUDA code or get_global_id(0) in the OpenCL code. The 
compiler adds macro like "#define idx 
(blockIdx.x*blockDimX+threadIdx.x)" for CUDA kernels 
and "#define idx get_global_id(0)" for OpenCL code to 
express such correspondence. Furthermore, while Cetus 
uses Procedure as the object for the kernel procedure, our 
compiler adds some attributes the procedure because of the 
distinctive features of GPU programs. For example, for the 
naive kernel, the compiler considers that the thread block 
dimension is (1, 1) by adding two macros "#define 
blockDimX 1" and "#define blockDimY 1" to the kernel 
procedures automatically unless the application developers 
manually set these values. Because the kernel procedure of 
MV has only one dimension, the "globalDimY" is set to 1 
for the naive version as shown in Figure 2a. The compiler 
does not change the globalDimY when it performs 

Figure 1. The framework of proposed compiler
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#define A(y,x) A[(y)* width+(x)] 
#define globalDimY 1 
__global__ void mv_naive(float *A, float *B, 
float *C, int width) { 
 float sum = 0; 
 for (int i=0; i< width; i=i+1) { 
  float a; 
  float b; 
  a = A(idx, i); 
  b = B[i]; 
  sum += a*b; 
 } 
 C[idx] = sum; 
} 

(a) Naive implementation of MV 

for (i=0; i<width; i=(i+16)) { 
  __shared__ float shared2[16]; 
  __shared__ float shared1[16][17]; 
  shared2[(0+tidx)]=B[i+tidx]; 
  for (l=0; l<16; l=(l+1)) 
    shared1[(0+l)][tidx]= 
          A[((idx-tidx)+l)][(i+tidx)]; 
  __syncthreads(); 
  for (int k=0; k<16; k=(k+1)){ 
    sum+=(shared1[tidx][k]*shared2[k]); 
  } 
__syncthreads(); 
} 
C[idx] = sum;  

 (b) Code after memory coalescing 

int offset = bidx*64; 
for (i= offset; i<width+ offset; i=(i+16)) { 
  __shared__ float shared2[16]; 
  __shared__ float shared1[16][17]; 
  int i1 = i% width; 
  shared2[(0+tidx)]=B[i1+tidx]; 
  for (l=0; l<16; l=(l+1)) 
    shared1[(0+l)][tidx]= 
          A[((idx-tidx)+l)][(i1+tidx)]; 
  __syncthreads(); 
  for (int k=0; k<16; k=(k+1)){ 
    sum+=(shared1[tidx][k]*shared2[k]); 
  } 
__syncthreads(); 
} 
C[idx] = sum;  
  (c) Code after removing partition camping 

optimizations. When the CPU code invokes the GPU 
programs, it utilizes these parameters.  

(3) Loop pass. Our compiler provides additional 
functions to the original loop object in Cetus. It identifies 
all the loops which include the global memory accesses 
and analyses the impacts of the loops on these global 
memory accesses. It also makes the loop transformation 
easier when the compiler applies the optimization passes. 
In the MV kernel, the variable "i" is loop iterator. 

(4) Memory expression pass. First, the compiler 
identifies all the global memory arrays from the 
parameters of the kernel procedure declaration such as 
"float* A", "float* B" in MV kernel. Second, the compiler 
tries to convert the global memory accesses into two-
dimensional memory accesses in the intermediate 
representation if possible. The reason is that the CUDA 
global memory can only present a matrix array as a one-
dimensional array. Such conversion is helpful to our 
optimization passes to determine data reuse. In the case of 

MV as shown in the Figure 2.a the access 
A[(idx)*width+(i)] is mapped to A(idx, i). There are 
several reasons for such mappings: 1) this macro definition 
has correct grammar for vendors' compilers so that the 
vendors' compilers can accept the kernels as inputs without 
modification, while accesses such as A[idx][i] is incorrect 
because the global memory array is one dimension; 2) such 
an expression can better express the algorithm and it is 
convenient for our compiler to generate the texture 
memory version from the global memory version, because 
the compiler only needs to change the procedure 
declaration and the macro for memory access. Third, the 
compiler decouples the indices of global memory accesses 
into a combination of constant indices, predefined indices, 
loop indices, and unresolved indices. For example, in the 
global memory access ‘a[idx][i+5]’, '5' is identified as a 
constant index, idx is indentified as a predefined index and 
i is identified as a loop index assuming that the memory 
access is in a loop with i as the index variable. With these 
indices, the compiler knows that the access ‘a[idx][i+5]’ 
has the same address for the threads along the Y direction 
because it does not have ‘idy’ or other indices which have 
different values for threads along the Y direction. In the 
MV kernel, the A(idx, i) is a two dimension array. Itse Y 
dimension has a predefined index "idx" and its X 
dimension has a loop index "i". 

(5) NVCC pass. Our compiler needs to know the 
accurate register usage and shared memory usage of the 
kernels. Therefore, our compiler invokes the vendor's 
compiler to compile the kernel to obtain the resource usage 
information. Such information is very useful to limit the 
search space of optimized kernels. The compiler adds these 
two attributes to the kernel procedure. 

(6) Postprecessor pass. This pass translates the GPU 
intermediate representation back to the CUDA 
intermediate representation for the final output of the 
kernels. For example, the compiler uses A[idx][i] to 
present the memory access for array A as intermediate 
representation when it applies optimization passes. For the 
final output, it needs to be converted to A(idx, i) and 
mapped to A[(idx)*width+(i)]. 

(7) CUDA to OpenCL pass. If the optimized OpenCL 
kernel is preferred, we translate the CUDA intermediate 
representation into OpenCL. 

The GPU optimization passes are as follows and the 
detailed implementation is presented in [3]. 

(1) Vectorization pass. Because the data type of 
memory accesses may have significant impact on 
bandwidth utilization, the compiler first checks data 
accesses inside a kernel procedure to see whether they can 
be grouped into a vector type data access. The 
Vectorization pass is ignored for MV on NVIDIA GPUs as 
vectorization does not improve memory access bandwidth 
on NVIDIA GPUs. 

(2) Memory Coalescing pass. GPGPU requires the 
threads follow very strict patterns to achieve high global 

Figure 2. Compiler optimization for MV
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memory bandwidth. The compiler detects the memory 
access pattern and converts non-coalesced memory 
accesses to coalesced ones. Figure 2b shows the MV code 
after the Memory Coalescing pass. Because the accesses 
for both A and B are based on loop iterator "i", which are 
not coalesced memory accesses. The compiler unrolls the 
loop, loads the data into shared memory and then accesses 
the data from shared memory. 

(3) Thread block merge and thread merge pass. There 
are two ways to reduce memory accesses: reuse data either 
in shared memory or in registers. When the workload of 
each thread block increases, the reused data in shared 
memory can be increased; when the workload of each 
thread increases, the reuse in registers is increased. In this 
pass, thread-block merge determines the workload for each 
thread block while thread merge decides the workload for 
each thread. The detailed discussion about thread merge 
and thread block merge can be found in [3].  

(4) Data prefetching pass. Data prefetching is a well-
known technique to overlap memory access latency with 
computation. It is implemented in our compiler. Because 
GPUs use multiple threads to overlap memory access 
latency, this step is skipped by default. 

(5) Removing memory partition camping pass. Because 
GPGPU prefers threads to distribute global memory 
accesses to different partitions of off-chip memory, our 
compiler applies several code transformations to eliminate 
memory partition camping. Figure 2c shows the code after 
removing partition camping by giving different partition 
offset for different thread blocks. The bidx is the block id 
of the thread block and one partition is 256 bytes. 

3. PERFORMANCE EVALUATION 

In our experiments, we used both NVIDIA GTX 480 
GPUs with CUDA SDK 3.2 and a 64-bit bit Red Hat 
enterprise Linux 5.4 operating system. For AMD/ATI 
HD5850 GPUs, we used AMD/ATI Stream SDK 2.3 on a 
32-bit Windows 7 operating system. Our compiler source 
code, the naïve kernels, and the optimized kernels are 
available at [4].  

From Figures 3 and 4, we can see that the compiler 
significantly improves the performance of various naïve 
kernels using the proposed optimizations: 3.2X on GTX 
480, 4.9X on HD 5870 on average using the geometric 
mean. The optimized MV achieves a 12.4X speedup on 
GTX 480 and a 36.4X speedup on HD 5870. 

4. CONCLUDING REMARKS 

In this paper, we present our experience in developing a 
compiler framework to optimize GPGPU programs using 
Cetus. As a source-to-source compiler framework, Cetus 
enables researchers like us to implement code 
optimizations on high level language without the 
knowledge of low level language like assembly. 
Optimizations at the high level language can be effective 
for different low level implementations. As shown in our 

work, the optimized OpenCL kernels can be effective for 
both NVIDIA and AMD platforms. To facilitate further 
development on our GPGPU compiler, we expect Cetus to 
add the OpenCL and CUDA support internally or some 
extension interfaces for parallel languages. Another 
important feature is static single assignment, which can 
simplify data dependency analysis.   

 
Figure 3. The speedups of the optimized kernels over the 
naive ones on GTX 480 

 
Figure 4. The speedups of the optimized kernels over the 
naive ones on HD 5870 
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