
1

DEVELOPING A HIGH PERFORMANCE GPGPU COMPILER USING CETUS
YI YANG, North Carolina State University

HUIYANG ZHOU, North Carolina State University

Abstract
In this paper we present our experience in developing

an optimizing compiler for general purpose computation
on graphics processing units (GPGPU) based on the Cetus
compiler framework. The input to our compiler is a naïve
GPU kernel procedure, which is functionally correct but
without any consideration for performance optimization.
Our compiler applies a set of optimization techniques to
the naive kernel and generates the optimized GPU kernel.
The implementation of our compiler is facilitated with the
Cetus infrastructure. The code transformation in the Cetus
compiler framework is called a pass. We classify all the
passes used in our work into two categories: functional
passes and optimization passes. The functional passes
translate input kernels into desired intermediate
representation, which can clearly represent memory
access patterns and thread configurations. The CUDA
language support pass is derived from MCUDA. A series
of optimization passes improve the performance of the
kernels by adapting the kernels to the GPGPU
architecture. Our experiments show that the optimized
code achieves very high performance, either superior or
very close to highly fine-tuned libraries.

1. INTRODUCTION

The high computational power and memory access
bandwidth of state-of-art graphics processing units (GPU)
have made them appealing for high performance
computing. However, it's big challenge to develop high
performance GPGPU code as application developers need
to know how to utilize the GPU hardware resources
effectively. We present our GPGPU compiler as a solution,
which takes naive GPU kernels as inputs and generates
optimized kernels to relieve the application developers of
low-level hardware-specific performance optimizations.

State-of-the-art GPUs use many-core architectures. The
on-chip processor cores are organized in a hierarchical
manner. A GPU has a number of streaming
multiprocessors (SMs) (NVIDIA GPUs) or SIMD engines
(AMD GPUs). Each SM/SIMD engine contains multiple
streaming processors / cores. Threads in GPUs follow the
single-program multiple-data (SPMD) program execution
model and they are organized in thread blocks/groups.
Within a thread block/group, the threads can communicate
data through fast on-chip shared memory. Each
block/group has multiple warps/wavefronts, in which the
threads are executed in the single-instruction multiple-data
(SIMD) manner. Every SM or SIMD has a number of
registers, which is private to each thread, shared memory,

which is visible to a thread block/group, and global
memory, which is used by all the threads. To full utilize
the resource on GPUs, two issues need to be considered: (1)
how to parallelize an application into concurrent work
items and distribute the workloads in a hierarchy of thread
blocks and threads; and (2) how to efficiently utilize the
GPU memory hierarchy, given its dominant impact on
performance. We develop our compiler based on Cetus [1]
to address these two issues.

Our compiler achieves the following goals. (1) It
enables the application developers to focus on algorithm-
level issues rather than low-level hardware-specific
performance optimizations. (2) It includes a set of new
compiler optimization techniques to improve memory
access bandwidth, to effectively leverage on-chip memory
resource (register file and shared memory) for data sharing,
and to eliminate partition conflicts. (3) It is highly
effective and the programs optimized by our compiler
achieve very high performance, often superior to manually
optimized codes.

2. IMPLEMENTATION

Our compiler leverages MCUDA [2] which adds
CUDA language support to Cetus [1] and translates the
kernel code into intermediate representation with CUDA
support. Our compiler adds additional passes to translate
the intermediate representation to our GPU intermediate
representation and applies GPU optimization passes on the
kernel. We classify the passes into two categories: the
functional passes and GPU optimization passes. The
functional passes do not improve the performance of the
kernels. Instead, they are needed for the preprocessor,
GPU optimization passes and the postprocessor. As shown
in the Figure 1, the preprocessor includes multiple
functional passes which translate the CUDA intermediate
representation to the GPU intermediate representation. The
GPU intermediate representation includes the information
on memory access patterns, loop structures, thread
configurations and thread block dimensions. Then the
compiler applies

Our compiler leverages MCUDA [2] which adds
CUDA language support to Cetus [1] and translates the
kernel code into intermediate representation with CUDA
support. Our compiler adds additional passes to translate
the intermediate representation to our GPU intermediate
representation and applies GPU optimization passes on the
kernel. We classify the passes into two categories: the
functional passes and GPU optimization passes. The
functional passes do not improve the performance of the

2

GPU Optimization passes

Input: Naive CUDA kernel

Vectorization pass

Thread block and thread merge pass

Data prefetching pass

Removing memory partition
camping pass

Memory Coalescing pass

Input: Naive OpenCL kernel

OpenCL to CUDA Pass

Intermediate Representation (CUDA)

Loop pass

Memory expression pass

Predefined pass

NVCC pass

CUDA to OpenCL Pass

Output: Optimized OpenCL kernel
functions & invocation parameters

Output: Optimized CUDA kernel
functions & invocation parameters

Postprocessor pass

Intermediate Representation (GPU)

Intermediate Representation (CUDA)

kernels. Instead, they are needed for the preprocessor,
GPU optimization passes and the postprocessor. As shown
in the Figure 1, the preprocessor includes multiple
functional passes which translate the CUDA intermediate
representation to the GPU intermediate representation. The
GPU intermediate representation includes the information
on memory access patterns, loop structures, thread
configurations and thread block dimensions. Then the
compiler applies five GPU optimization passes on the
GPU intermediate representation. Finally the postprocessor
translates the GPU intermediate representation back to the
CUDA intermediate representation and outputs the high
performance kernels in either CUDA or OpenCL.

The functional passes are summarized as follows. We
use matrix vector multiplication (MV) as a case study to
illustrate the compilation steps.

(1) OpenCL to CUDA pass. Since our compiler uses the
intermediate representation following the CUDA style, we
convert the OpenCL code into CUDA code in this pass to
facilitate code optimizations. Because the naive version of
MV is CUDA code, this step is bypassed.

(2) Predefined pass. To simplify the compiler, we use
unified variables to express the internal variables of
CUDA or OpenCL. For example, 'idx' in the compiler is
the same as (blockIdx.x*blockDim.x + threadIdx.x) in the
CUDA code or get_global_id(0) in the OpenCL code. The
compiler adds macro like "#define idx
(blockIdx.x*blockDimX+threadIdx.x)" for CUDA kernels
and "#define idx get_global_id(0)" for OpenCL code to
express such correspondence. Furthermore, while Cetus
uses Procedure as the object for the kernel procedure, our
compiler adds some attributes the procedure because of the
distinctive features of GPU programs. For example, for the
naive kernel, the compiler considers that the thread block
dimension is (1, 1) by adding two macros "#define
blockDimX 1" and "#define blockDimY 1" to the kernel
procedures automatically unless the application developers
manually set these values. Because the kernel procedure of
MV has only one dimension, the "globalDimY" is set to 1
for the naive version as shown in Figure 2a. The compiler
does not change the globalDimY when it performs

Figure 1. The framework of proposed compiler

3

#define A(y,x) A[(y)* width+(x)]
#define globalDimY 1
__global__ void mv_naive(float *A, float *B,
float *C, int width) {
 float sum = 0;
 for (int i=0; i< width; i=i+1) {
 float a;
 float b;
 a = A(idx, i);
 b = B[i];
 sum += a*b;
 }
 C[idx] = sum;
}

(a) Naive implementation of MV

for (i=0; i<width; i=(i+16)) {
 __shared__ float shared2[16];
 __shared__ float shared1[16][17];
 shared2[(0+tidx)]=B[i+tidx];
 for (l=0; l<16; l=(l+1))
 shared1[(0+l)][tidx]=
 A[((idx-tidx)+l)][(i+tidx)];
 __syncthreads();
 for (int k=0; k<16; k=(k+1)){
 sum+=(shared1[tidx][k]*shared2[k]);
 }
__syncthreads();
}
C[idx] = sum;

 (b) Code after memory coalescing

int offset = bidx*64;
for (i= offset; i<width+ offset; i=(i+16)) {
 __shared__ float shared2[16];
 __shared__ float shared1[16][17];
 int i1 = i% width;
 shared2[(0+tidx)]=B[i1+tidx];
 for (l=0; l<16; l=(l+1))
 shared1[(0+l)][tidx]=
 A[((idx-tidx)+l)][(i1+tidx)];
 __syncthreads();
 for (int k=0; k<16; k=(k+1)){
 sum+=(shared1[tidx][k]*shared2[k]);
 }
__syncthreads();
}
C[idx] = sum;
 (c) Code after removing partition camping

optimizations. When the CPU code invokes the GPU
programs, it utilizes these parameters.

(3) Loop pass. Our compiler provides additional
functions to the original loop object in Cetus. It identifies
all the loops which include the global memory accesses
and analyses the impacts of the loops on these global
memory accesses. It also makes the loop transformation
easier when the compiler applies the optimization passes.
In the MV kernel, the variable "i" is loop iterator.

(4) Memory expression pass. First, the compiler
identifies all the global memory arrays from the
parameters of the kernel procedure declaration such as
"float* A", "float* B" in MV kernel. Second, the compiler
tries to convert the global memory accesses into two-
dimensional memory accesses in the intermediate
representation if possible. The reason is that the CUDA
global memory can only present a matrix array as a one-
dimensional array. Such conversion is helpful to our
optimization passes to determine data reuse. In the case of

MV as shown in the Figure 2.a the access
A[(idx)*width+(i)] is mapped to A(idx, i). There are
several reasons for such mappings: 1) this macro definition
has correct grammar for vendors' compilers so that the
vendors' compilers can accept the kernels as inputs without
modification, while accesses such as A[idx][i] is incorrect
because the global memory array is one dimension; 2) such
an expression can better express the algorithm and it is
convenient for our compiler to generate the texture
memory version from the global memory version, because
the compiler only needs to change the procedure
declaration and the macro for memory access. Third, the
compiler decouples the indices of global memory accesses
into a combination of constant indices, predefined indices,
loop indices, and unresolved indices. For example, in the
global memory access ‘a[idx][i+5]’, '5' is identified as a
constant index, idx is indentified as a predefined index and
i is identified as a loop index assuming that the memory
access is in a loop with i as the index variable. With these
indices, the compiler knows that the access ‘a[idx][i+5]’
has the same address for the threads along the Y direction
because it does not have ‘idy’ or other indices which have
different values for threads along the Y direction. In the
MV kernel, the A(idx, i) is a two dimension array. Itse Y
dimension has a predefined index "idx" and its X
dimension has a loop index "i".

(5) NVCC pass. Our compiler needs to know the
accurate register usage and shared memory usage of the
kernels. Therefore, our compiler invokes the vendor's
compiler to compile the kernel to obtain the resource usage
information. Such information is very useful to limit the
search space of optimized kernels. The compiler adds these
two attributes to the kernel procedure.

(6) Postprecessor pass. This pass translates the GPU
intermediate representation back to the CUDA
intermediate representation for the final output of the
kernels. For example, the compiler uses A[idx][i] to
present the memory access for array A as intermediate
representation when it applies optimization passes. For the
final output, it needs to be converted to A(idx, i) and
mapped to A[(idx)*width+(i)].

(7) CUDA to OpenCL pass. If the optimized OpenCL
kernel is preferred, we translate the CUDA intermediate
representation into OpenCL.

The GPU optimization passes are as follows and the
detailed implementation is presented in [3].

(1) Vectorization pass. Because the data type of
memory accesses may have significant impact on
bandwidth utilization, the compiler first checks data
accesses inside a kernel procedure to see whether they can
be grouped into a vector type data access. The
Vectorization pass is ignored for MV on NVIDIA GPUs as
vectorization does not improve memory access bandwidth
on NVIDIA GPUs.

(2) Memory Coalescing pass. GPGPU requires the
threads follow very strict patterns to achieve high global

Figure 2. Compiler optimization for MV

4

memory bandwidth. The compiler detects the memory
access pattern and converts non-coalesced memory
accesses to coalesced ones. Figure 2b shows the MV code
after the Memory Coalescing pass. Because the accesses
for both A and B are based on loop iterator "i", which are
not coalesced memory accesses. The compiler unrolls the
loop, loads the data into shared memory and then accesses
the data from shared memory.

(3) Thread block merge and thread merge pass. There
are two ways to reduce memory accesses: reuse data either
in shared memory or in registers. When the workload of
each thread block increases, the reused data in shared
memory can be increased; when the workload of each
thread increases, the reuse in registers is increased. In this
pass, thread-block merge determines the workload for each
thread block while thread merge decides the workload for
each thread. The detailed discussion about thread merge
and thread block merge can be found in [3].

(4) Data prefetching pass. Data prefetching is a well-
known technique to overlap memory access latency with
computation. It is implemented in our compiler. Because
GPUs use multiple threads to overlap memory access
latency, this step is skipped by default.

(5) Removing memory partition camping pass. Because
GPGPU prefers threads to distribute global memory
accesses to different partitions of off-chip memory, our
compiler applies several code transformations to eliminate
memory partition camping. Figure 2c shows the code after
removing partition camping by giving different partition
offset for different thread blocks. The bidx is the block id
of the thread block and one partition is 256 bytes.

3. PERFORMANCE EVALUATION

In our experiments, we used both NVIDIA GTX 480
GPUs with CUDA SDK 3.2 and a 64-bit bit Red Hat
enterprise Linux 5.4 operating system. For AMD/ATI
HD5850 GPUs, we used AMD/ATI Stream SDK 2.3 on a
32-bit Windows 7 operating system. Our compiler source
code, the naïve kernels, and the optimized kernels are
available at [4].

From Figures 3 and 4, we can see that the compiler
significantly improves the performance of various naïve
kernels using the proposed optimizations: 3.2X on GTX
480, 4.9X on HD 5870 on average using the geometric
mean. The optimized MV achieves a 12.4X speedup on
GTX 480 and a 36.4X speedup on HD 5870.

4. CONCLUDING REMARKS

In this paper, we present our experience in developing a
compiler framework to optimize GPGPU programs using
Cetus. As a source-to-source compiler framework, Cetus
enables researchers like us to implement code
optimizations on high level language without the
knowledge of low level language like assembly.
Optimizations at the high level language can be effective
for different low level implementations. As shown in our

work, the optimized OpenCL kernels can be effective for
both NVIDIA and AMD platforms. To facilitate further
development on our GPGPU compiler, we expect Cetus to
add the OpenCL and CUDA support internally or some
extension interfaces for parallel languages. Another
important feature is static single assignment, which can
simplify data dependency analysis.

Figure 3. The speedups of the optimized kernels over the
naive ones on GTX 480

Figure 4. The speedups of the optimized kernels over the
naive ones on HD 5870

5. References

[1] Lee, S.-I., Johnson, T. and Eigenmann, R. 2003. Cetus – an
extensible compiler infrastructure for source-to-source
transformation. In Proceedings of Workshops on Languages
and Compilers for Parallel Computing (LCPC'03). 539–553.

[2] Stratton, J. A., Stone, S. S., and Hwu, W. W. 2008.
MCUDA: An Efficient Implementation of CUDA Kernels
for Multi-Core CPUs. The 21st International Workshop on
Languages and Compilers for Parallel Computing
(LCPC'08). 16-30.

[3] Yang, Y., Xiang, P., Kong, J. and Zhou, H. 2010. A GPGPU
Compiler for Memory Optimization and Parallelism
Management. The ACM SIGNPLAN 2010 Conference on
Programming Language Design and Implementation
(PLDI'10). ACM. 86-97.

[4] Yang, Y. and Zhou, H. 2010. GPGPU compiler.
http://code.google.com/p/gpgpucompiler/

1

2

4

8

16

Sp
e
e
d
u
p

Input matrix size (4kx4k matrices or vector)

Speedup on naïve kernel on GTX 480

1

2

4

8

16

32

64

Sp
e
e
d
u
p

Input matrix size (4kx4k matrices or vector)

Speedup on naïve kernel on HD 5870

