
Extensible Pattern Recognition in DSP Programs
using Cetus

Amin Shafiee Sarvestani
Dept. of Computer and

Information Science,
Linköping University, Sweden

amish805@student.liu.se

Erik Hansson
Dept. of Computer and

Information Science,
Linköping University, Sweden
erik.hansson@liu.se

Christoph Kessler
Dept. of Computer and

Information Science,
Linköping University, Sweden

christoph.kessler@liu.se

Abstract—We describe a tool for pattern (idiom) recognition
in DSP (digital signal processing) source programs. We focus on
patterns for loops and the statements in their bodies as these often
are the performance-critical constructs in DSP applications for
which replacement by highly optimized, target-specific parallel
algorithms will be most profitable. For better structuring and
efficiency of pattern recognition, we classify patterns by different
levels of complexity such that patterns in higher levels are defined
in terms of lower level patterns.

Our tool utilizes functionality provided by the Cetus compiler
infrastructure for static pattern recognition. It works on the
Cetus intermediate representation (IR) and applies bottom-up
pattern matching. For better extensibility and abstraction, most
of the structural part of recognition rules is specified in XML
form. This separates the tool implementation from the pattern
specifications.

I. INTRODUCTION

Modern special-purpose chip multiprocessor architectures
designed for special-purpose application areas such as digital
signal processing (DSP) are highly optimized, heterogeneous
and increasingly parallel systems that must fulfill very high
demands on power efficiency. Architectural features include
advanced instructions, SIMD computing, explicitly managed
on-chip memory units, on-chip networks and reconfiguration
options, all of which are exposed to the programmer and
compiler. One example is the ePUMA architecture [2] be-
ing developed at Linköping University, a low-power high-
throughput multicore DSP architecture designed for for emerg-
ing applications in mobile telecommunication and multimedia.

This high architectural complexity makes it very hard for
programmers and especially for compilers to generate efficient
target code if starting from (even well-written) sequential
legacy C code. Domain-specific languages such as SPIRAL
[8] are one possible way of enabling efficient platform-specific
code generation but require rewriting of the program code from
scratch in a new language. In this work, we propose instead
an approach for automatic porting of applications by statically
analyzing their source code for known frequently occurring
programming idioms captured as patterns, and replacing rec-
ognized code parts by an equivalent implementation that is
highly optimized for the target architecture, such as library
code or code generated from autotuning tools such as SPIRAL.

For our work as presented here, we started from an earlier
approach for pattern recognition in scientific source codes,

the PARAMAT approach [4]. A pattern is an abstraction of a
computation that generally can be expressed in many different
ways using a given programming language such as C, even
if some restrictions (such as absence of pointers) apply. By
specifying known recognition rules for patterns in terms of
language elements such as for loops, assignment statements
and expression operators, a tool can, as far as enabled by
the specified rules, identify occurrences of patterns in source
code. Recognition is conservative, i.e. a pattern matches only
if one of its recognition rules completely applies; if some
constraint in a recognition rule can not be checked statically,
the entire rule fails. If the patterns and their recognition rules
are carefully defined, the matching process is deterministic.
This implies that any given snippet of source program code
can match at most one pattern.

Our tool initially uses the same principle and matching al-
gorithm as PARAMAT [4] and also re-uses most of the patterns
specified in that earlier work. Our tool is however much more
modular and extensible. It uses an object oriented language,
allowing for a modern OO design for the specification of
patterns and use of e.g. reflection for convenient expression
of recognition rules. We also developed an XML format for
specifying patterns and the structural parts of their matching
rules; this pattern specification parameterizes the matching
tool, which separates the specification of recognition rules
from the implementation of the matching tool itself, as no
pattern is hardcoded and the list of patterns can be extended
independently from the tool. Some of the patterns adopted
from PARAMAT are modified and some new patterns are
defined to also cover (part of) the DSP domain.

Moreover, our tool is built on top of Cetus [3], a modern
industrial-strength compiler framework with better support for
source-level program analysis and transformation.

The remainder of this paper is organized as follows. Sec-
tion II gives a very simple example of patterns, the recognition
process and the hierarchial structuring of the set of patterns.
In Section III we give an overview of the architecture and
how the pattern matching mechanism works. Section IV gives
more details about how Cetus is used in the implementation,
and Section V presents first experimental results for the tool.
We conclude with a short review of related work and give an
outlook to future work.

II. PATTERNS AND PATTERN HIERARCHY

Many of the patterns that are candidates for replacement by
optimized target-specific code are characterized by (for) loops.
As recognition works step-wise bottom-up and is conservative,
all statements in a loop body must be matched by some pattern
before the entire loop can be recognized. Hence, we also need
to define patterns for elementary program constructs such as
constants or variable and array accesses, operators and intrinsic
functions, expressions and assignments.

For example, a simple assignment of a constant to a variable
such as

x=c;

is easily recognized as an occurrence of a pattern called SINIT
(scalar initialization). The assignment statement is annotated
with a pattern instance which could (e.g., for debugging
purposes) be shown as annotation of the program code in the
following way:

// SINIT(x,c)
x=c;

Recognition rules are formulated to match the bottom-up
recognition process. Hence, rules for higher level patterns
are defined in terms of instances of lower level patterns.
For example, if the SINIT pattern occurs inside a for-loop,
we could find an instance of the VINIT pattern (vector
initialization) as in the following example

// VINIT(_i0,_x0,c)
for (i=K; i<n; i+=step)
// SINIT(x[i],c)
x[i]=c;

where _i0 and _x0 are newly created symbols constructed
by the recognizer that denote a loop range object and a vector
container, respectively, which internally hold the parameters
about loop and access bounds etc.

For each pattern p, there exists a list of next-level patterns
or ”superpatterns” which can be built from an occurrence of
p. This relationship among the patterns is shown in a graph
called the pattern hierarchy graph (PHG). Figure 1 shows a
small excerpt of this graph with some simple patterns.

Fig. 1. Excerpt of the Pattern Hierarchy Graph

III. RECOGNITION METHOD AND TOOL DESIGN

A. Pattern Detection

The recognition tool works on top of the Cetus IR tree,
which is generated from the C source file of a DSP program.
This tree is traversed in post-order, using the algorithm pre-
sented in [4].

Leaf nodes are of type Identifier or Literal in Cetus.
Identifiers and Literals are trivial patterns but are defined
and recognized as they are the basis for the definition and
recognition of other patterns.

For recognizing the root node of any subtree, the tool
inspects the PHG to get the list of candidate patterns that can
be built atop the previously detected patterns for the children
nodes. The structural constraints in the recognition rules of
each candidate pattern are then checked against the list of
detected patterns in the children of this subtree. If any pattern
matches, a new data structure is created which contains a
reference to the current subtree and another one to the instance
(summary data structure) of the detected pattern. This structure
is kept for the parent node of the newly matched subtree in a
hash table. If the matching fails for all candidates, this subtree
is no longer considered and the matching process continues in
other branches. This process continues until the whole tree is
traversed.

For certain patterns and rules, some extra checking beyond
the structural constraints must be applied as well; for these
there exists a specified function, which is uniquely defined for
each pattern. After initial checking of the tree structure, this
specified function is loaded by reflection and takes care of the
extra checking required for that particular pattern.

Figure 2 shows the matching process at the root node of
the illustrated subtree. The root node is a for loop header with
only one child, which already has been detected as occurrence
of a SINIT pattern. When the tool reaches the root node the
information regarding the patterns detected in children nodes
are retrieved from a hash table, then this information (here,
the SINIT pattern) is sent to the PHG to find the candidates
for the next level patterns defined on top (in this case, e.g.,
VINIT and VASSIGN patterns). The candidates are sent to
the pattern matcher, which compares the internal structure of
each pattern against the structure of the parent node and its
children.

B. Pattern definition

All patterns are defined as XML nodes in a pattern specifi-
cation file. For each pattern there exists an XML element that
describes the name and the structural part of recognition rules.1

As an example, Figure 3 shows the definition of the SINIT
pattern. The expected structure of each pattern is defined
based on the IR node type names used in the Cetus IR. The
”structure” tag describes the expected number of elements and
their node types. For example, Figure 3 shows that SINIT

1In the current implementation we also need to specify the list of superpat-
terns to build the PHG; this information will be extracted automatically from
the recognition rules in the XML file in a future version of our tool.

Fig. 2. The matching process at the root based on the children’s patterns

has two elements, where the first one is either Identifier or
ArrayAccess and the second one can be either FloatLiteral or
IntegerLiteral.

Before the matching process starts, the XML file is parsed
and the PHG data structure (with patterns, recognition rules
etc.) is generated.

<b a s e p a t t e r n name=” SINIT ” >
<r o o t t y p e>A s s i g n m e n t E x p r e s s i o n< / r o o t t y p e>
< s t r u c t u r e>
<e l e m e n t o r d e r i d =” 1 ”>
<t y p e> I d e n t i f i e r< / t y p e>
<t y p e>ArrayAccess< / t y p e>

< / e l e m e n t>
<e l e m e n t o r d e r i d =” 2 ”>
<t y p e>F l o a t L i t e r a l< / t y p e>
<t y p e> I n t e g e r L i t e r a l< / t y p e>

< / e l e m e n t>
< / s t r u c t u r e>
. . .

< / b a s e p a t t e r n>

Fig. 3. Definition of the SINIT pattern in the XML-based specification.

C. System architecture

The general architecture of the system can be seen in Fig-
ure 4. The input program source file is parsed by Cetus and the
IR tree is generated. Our tool builds the PHG data structures
from the XML specification file, which are then passed to the
pattern matcher to start the matching process. The final results
are sent to the Cetus annotator which annotates each node by
its equivalent pattern.

D. Extensibility

The extension by new patterns can be accomplished easily
as they are defined independently of the recognition tool. Each
new pattern is added by defining the structure inside a new
XML tag. If the pattern requires extra checking, we only need
to implement that specified function, which would be later
automatically called by reflection.

Fig. 4. Pattern Recognizer Architecture

E. Horizontal pattern matching

Beyond vertical pattern matching as described above, there
are also patterns that cover (a merge of) several sibling nodes
and thus require horizontal pattern matching [4]. For example,
three SINIT pattern instances in the following code can be
merged into an instance of a SWAP pattern on variables x
and y using z:

z = x; // SINIT(z,x)
x = y; // SINIT(x,y)
y = z; // SINIT(y,z)

Before the pattern recognition process at the parent level
of any subtree starts, the list of the children patterns are
independently examined for horizontal patterns in order to see
if they can be merged. If yes, the IR nodes with the old pattern
instances are then deleted (inactivated) and replaced (new node
inserted to carry the newly detected horizontal pattern). Details
of guiding horizontal matching by data flow edges can be
found in [4].

IV. DETAILS OF INTERACTION WITH CETUS

The recognition tool was built on top of Cetus v1.2.1, which
was the latest version at the time of starting the development.
The package cetus.hir provides most of the functionality
needed for our tool. The key to the smooth implementation
of the tool was the Cetus IR tree. It provided an efficient
and high level tree structure which could be easily traversed.
However, modifying the tree was not as easy as expected, and
it generated some issues in certain cases. The cetus.hir
package offered lots of functions that were specific based on
the type of the node which facilitated the process of accessing
the internal structure of each object. This was especially
important as we have lots of patterns whose definitions depend
on the for loop construct, but using the package we could
easily access its parts such as the initial statement, the loop
step and the statements of the loop body.

File Name Size Time Patterns Rec. Rate
AverageFilter.c 2.2 KB 0.239 s 129 35%
GaussianFilter.c 1.5 KB 0.204 s 45 79%
RedColorEnhancement.c 2.6 KB 0.333 s 105 54%
FourPointDCT.c 0.6 KB 0.17 s 33 84%

TABLE I
EVALUATION OF THE TOOL WITH FOUR DSP SOURCE CODES.

After the pattern detection phase has completed, we display
the result by annotating each subtree root in the IR by
its equivalent detected pattern (if any). For this purpose,
each pattern implements a print function that generates an
annotation in string format. Our tool uses the annotation
features in Cetus and adds the generated annotation string to
the specified subtree. The only thing left is to call the print
function provided by Cetus, which will print both the code
and the annotations, such that the pattern instance is seen as
a comment statement preceding each matched statement, as
shown earlier.

The expression simplifier functionality of Cetus is another
useful feature as we need to simplify some certain statements
before applying the pattern recognition tool.

The iterators implemented by Cetus offers a Next function,
which gets the next node in the tree traversal based on the
order of the iterator. However, the relationship between the
current node and the next node provided by the Next function
is unknown. Our tool applies different rules depending on the
relationship between the current and the next node, so knowing
whether the next node is the sibling or part of another branch
makes a big difference, while the iterator structure does not
provide this kind of information unless checked manually.

V. EVALUATION

For an early evaluation of the pattern detection rate and
performance, we applied the first prototype of our tool to
several DSP source files taken from [5]. We were especially
interested in the ratio of the time spent inside the recognizer
tool to the file size and the number of detected patterns. The
execution time of the tool is expected to increase with the size
of the source code; however, the structure of the code itself
can affect the execution time. A certain source code might
contain more instances of defined patterns and consequently
execution time increases, Table I shows the results for some
example DSP source codes. The time shown includes the time
taken by the pattern recognizer and the time taken by Cetus
to print the output code.

The recognition rate is given as the percentage of matched
statements.2 The differences in the recognition rate in Table I
originate from the code structure. GaussianFilter and Four-
pointDCT contain a large percentage of low-level patterns that
are fully implemented; as a result, the high recognition rate
was expected for these files.

2The percentage of matched for loops may be another good metric for the
recognition rate, which we will use in future work.

VI. RELATED WORK

Pattern recognition and automatic parallelization has been
researched extensively. For instance, Kessler [4] and Di Mar-
tino [6] describe recognition tools for automatic paralleliza-
tion. Pottenger and Eigenmann [7] implemented a Fortran
idiom recognizer in Polaris, which is a predecessor of Cetus.
The XARK compiler [1] focuses on recognizing a collection
of computational kernels and works on a special high level IR
known as Gated Single Assignment (GSA) form. We refer to
[1] for further references.

VII. FUTURE WORK

This is work in progress. We are continuously adding more
higher level patterns and plan to analyze a larger set of
example codes.

At this point we restrict our input programs to be pointer
free due to the complexity of analyzing them statically. Future
work may also include a technique to integrate and detect
patterns involving pointers.

Our pattern recognition tool is planned to be part of a com-
piler tool chain for the low-power high-throughput multicore
DSP architecture ePUMA that is currently being developed
at Linköping University for emerging applications in mobile
telecommunication and multimedia [2]. The pattern informa-
tion derived by the tool will help with optimized ePUMA code
generation by automatically replacing the (nontrivial) detected
pattern instances with expert-written computation kernels that
are highly tuned for ePUMA. For this purpose, an alternative
source code emitter will be written that emits function calls
instead of annotations in the original source code.

Acknowledgements This work was partly supported by SSF.

REFERENCES

[1] Manuel Arenaz, Juan Touriño, and Ramon Doallo. Xark: An extensible
framework for automatic recognition of computational kernels. ACM
Trans. Program. Lang. Syst., 30:32:1–32:56, October 2008.

[2] Erik Hansson, Joar Sohl, Christoph Kessler, and Dake Liu. Case study
of efficient parallel memory access programming for the embedded het-
erogeneous multicore DSP architecture ePUMA. In Proc. Int. Workshop
on Multi-Core Computing Systems (MuCoCoS-2011), June 2011, Seoul,
Korea. IEEE CS Press, 2011.

[3] Troy A. Johnson, Sang ik Lee, Long Fei, Ayon Basumallik, Rudolf Eigen-
mann, and Samuel P. Midkiff. Experiences in using Cetus for source-to-
source transformations. In Proc. 17th Int. Workshop on Languages and
Compilers for Parallel Computing (LCPC), 2004.

[4] Christoph W. Kessler. Pattern-driven automatic parallelization. Scientific
Programming, 5(3):251–274, 1996.

[5] H. Malepati. Digital Media Processing: DSP Algorithms Using C.
Elsevier Science, 2010.

[6] Beniamino Di Martino and Giulio Iannello. Pap recognizer: A tool
for automatic recognition of parallelizable patterns. In Proc. 4th Int.
Workshop on Program Comprehension, Los Alamitos, CA, USA, March
1996. IEEE Computer Society.

[7] Bill Pottenger and Rudolf Eigenmann. Idiom Recognition in the Polaris
Parallelizing Compiler. In Proc. 9th Int. Conf. on Supercomputing, pages
444–448. ACM, July 1995.

[8] Markus Püschel, Jose M. F. Moura, Jeremy R. Johnson, David Padua,
Manuela M. Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti,
Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nico-
las Rizzolo. Spiral: Code generation for DSP transforms. Proceedings of
the IEEE, 93(2), February 2005.

