
Cetus: A Source-to-Source Compiler
Infrastructure for Multicores

Hansang Bae, Leonardo Bachega, Chirag Dave, Sang-Ik Lee, Seyong Lee,
Seung-Jai Min, Rudolf Eigenmann and Samuel Midkiff

Purdue University?

Abstract. We describe the Cetus compiler infrastructure and its use in
a number of transformation tasks for multicore architectures. The origi-
nal intent of Cetus was to serve as a parallelizing compiler. In addition,
the infrastructure has been used to build translators for programs writ-
ten in the OpenMP directive language to be compiled onto multicore
architectures. They include a direct OpenMP translator for current mul-
ticores, an OpenMP to MPI translator for many-cores exhibiting disjoint
address spaces, and a translator for OpenMP onto GPU architectures.
We are also building autotuning capabilities into Cetus, which can defer
compile-time optimization decisions to runtime. This feature is especially
important for heterogeneous multicore architectures. We will describe the
organization of the Cetus infrastructure and present preliminary results
of several application projects.

1 Introduction

Cetus is a source-to-source restructuring compiler infrastructure for C programs,
and is a follow-on project to the Polaris Fortran translator [1, 2]. The driving
motivation was the need for a source-level compiler infrastructure that facilitates
advanced optimizations for parallel programs written in C. Cetus has already
been used for a number of applications, several of which we will describe.

Cetus had originally been created in a Purdue advanced compiler class project
and has evolved into a fairly robust infrastructure. At first, the manpower behind
the Cetus development was all “volunteer work” by several dedicated graduate
students. Recently, the project has obtained funding from the U.S. National
Science Foundation to become a community resource. This grant allows us to
improve the robustness of Cetus, respond to user requests, and add new features.

Cetus is already in use by a number of research groups in the U.S. and world-
wide [3–6]. Increasing the user community is one goal of this paper. To this end,
this paper describes the Cetus Community Portal in Section 2, the Cetus internal
organization in Section 3, current analysis and transformation capabilities in
Sections 4 and 5, respectively, and applications projects in Section 6.

? This work was supported, in part, by the National Science Foundation under grants
No. 0429535-CCF, 0650016-CNS, CNS-0751153, and CNS-0707931.

Cetus is being used and extended in ways beyond those described in this pa-
per. Notably, in ongoing work we are adding passes for improved alias and data-
dependence analysis as well as additional parallelizing transformations. Other
projects extend Cetus to related languages, such as C++ and Java, and dialects,
such as C for GPUs.

2 Cetus Community Portal

Developing a dependable community support system and reaching out to Cetus
users is one of our primary goals. As we continue to build more functionality, it is
crucial to be able to cater to the needs of our users and influence our development
with their feedback. The Community Portal at http://cetus.ecn.purdue.edu
serves that purpose. The Cetus infrastructure is available for download at this
portal.

2.1 Documentation

The website provides easy access to documentation in order to assist with the
process of installing and running the Cetus compiler. This documentation in-
cludes the Cetus Compiler manual, which provides sections on the Cetus archi-
tecture as well as important information to help pass writers with incorporating
new analysis and transformation passes using the existing Cetus API. Sections on
existing analysis and transformation passes are under development. The Cetus
API is made available in Javadoc format via the website as well.

2.2 Download

The latest version can be downloaded at the same website. Cetus downloads
are maintained under the Artistic License, details of which can be found on the
website.

2.3 Community Support

We have now incorporated a strong user feedback system within the Cetus web-
site to additionally help us with answering questions from users and dealing with
the issues they encounter as they continue to use our framework to meet their
needs.

Bugzilla: The website supports Bugzilla v3.0.1. This is a utility that allows
users to submit bugs reports. Users can also inform the Cetus team about issues
they have come across while using the compiler, to see the progress related to
bugs submitted and to receive feedback when the bugs have been fixed. This
allows us to interact with our customer base while developing the infrastructure
with the right needs in mind and to involve users in the development process of
Cetus.

2

Mailing List: A Cetus-users mailing list can now be used to discuss ideas,
new functionality and research related to Cetus that would benefit the entire
research community as well as the users of Cetus. This can be considered as a
robust means of information exchange that would help incorporate new ideas
into Cetus.

3 Cetus Organization and Internal Representation

3.1 Cetus Class Hierarchy

Cetus’ internal program representation (IR) is implemented in the form of a
Java class hierarchy. There is complete data abstraction, with pass writers only
manipulating the IR through access functions. An early version of this class
hierarchy was described in [7]. We briefly mention a few changes with respect
to this version.

– Symbol table: Cetus’ symbol table functionality provides information about
identifiers and data types. Its implementation makes direct use of the in-
formation stored in declaration statements stored in the IR. There is no
separate and redundant symbol table storage.

– Traversable objects: All Cetus IR objects are derived from a base class
“Traversable”. This class provides the functionality to iterate over lists of
objects in a generic way.

– Annotations: Comments, pragmas, directives, and other types of auxiliary
information about IR objects can be stored in annotation objects. They take
the form of declarations. An annotation may be associated with a statement
(e.g., info about an OpenMP directive belonging to a for statement) or may
stand independently (e.g., a comment line).

– Printing: The printing functions have been extended to allow for flexible
rendering of the IR classes.

3.2 Symbolic Manipulation

Like its predecessor Polaris [1, 2], a key feature of Cetus is the ability to reason
about the represented program in symbolic terms. For example, compiler anal-
yses and optimizations at the source level often require the expressions in the
program to be in a simplified form. A specific example is data dependence anal-
ysis that collects the coefficients of affine subscript expressions, which are passed
to the underlying data dependence test package. Cetus has functionalities that
ease the manipulation of expressions for pass writers. These utilities simplify and
normalize a given expression. The following examples show the features of the
simplification utility. In addition, Cetus provides basic arithmetical operations
(add, multiply, subtract, and divide) between symbolic expressions.

While most current Cetus passes make use of these capabilities, they are key
for the Symbolic Range Analysis Pass, described in Section 4.4.

3

1+2*a+4-a ⇒ 5+a (folding)
a*(b+c) ⇒ a*b+a*c (distribution)
(a*2)/(8*c) ⇒ a/(4*c) (division)
(1-a)<(b+2) ⇒ (1+a+b)>0 (normalization)
a && 0 && b ⇒ 0 (short-circuit evaluation)

Fig. 1. Symbolic simplification/normalization examples.

4 Program Analysis Capabilities

Advanced program analysis capabilities are essential to Cetus; they will grow
through our ongoing efforts and by incorporating passes developed by the Ce-
tus user community. Here we are describing some basic analyses, including a
data flow framework, array section analysis, symbolic range analysis, and data
dependence analysis.

4.1 Data Flow Analysis

Table 1. Equations used in Data Flow Analysis

Forward Flow Backward Flow
Any Out(b) = Gen(b) ∪ (In(b) - Killed(b)) In(b) = Gen(b) ∪ (Out(b) - Killed(b))
Path In(b) = ∪ Out(i) where i ∈ Pred(b) Out(b) = ∪ In(i) where i ∈ Succ(b)
All Out(b) = Gen(b) ∪ (In(b) - Killed(b)) In(b) = Gen(b) ∪ (Out(b) - Killed(b))

Path In(b) = ∩ Out(i) where i ∈ Pred(b) Out(b) = ∩ In(i) where i ∈ Succ(b)

Cetus provides a template for implementing data flow analysis. A pass writer
only needs to specify the kind of data flow analysis (forward/backward and
all-path/any-path) and provide two methods, which compute the Gen set and
Killed set depending on a specific data flow problem.

Figure 2 shows how reaching definition analysis is implemented in Cetus,
using a worklist algorithm. In the figure, both is forward and is allpath
are set to true because reaching definition problem is a forward allpath prob-
lem. The first node is added in the worklist work and the while-loop is ex-
ecuted. Inside the while-loop, a node is chosen from the sorted control flow
graph to visit. Based on the value of the is forward and is allpath variables,
computeDataFlowEquation will solve one of the four dataflow equations de-
scribed in Table 1. computeDataFlowEquation() computes the In and Out sets
for that given node. Out set is monitored to determine if any node has to be
added to the worklist. When the worklist work is empty, the loop terminates.

4.2 Array Section Analysis

Array sections describe the set of array elements that are accessed by program
statements. Array section analysis enables the Cetus passes to deal with sub-

4

public class reachingDefinition extends DataFlowPass
{

public ControlFlowGraph cfg;
public reachingDefinition(Traversable root) {

super(root);
cfg = new ControlFlowGraph(root);

}
public void solveRechingDefinition() {

Traversable cur_node;
boolean is_forward = true; /* true: forward, false: backward */
boolean is_allpath = true; /* true: allpath, false: anypath */
Hashset<Traversable> In ;
Hashset<Traversable> Out ;

/* sort cfg in reverse post-order for forward, post-order for backward */
cfg.sort(is_forward);
work.enqueue(cfg.getFirst());
while(!work.isEmpty()) {

cur_node = work.dequeue();
computeDataFlowEquation(cur_node, In, Out, is_forward, is_allpath);
if(Out has changed) {

work.enqueue(cur_node.getSuccessors());
}

}
}
public Hashset getGenSet(Traversable t) { /* Pass-writer-defined Gen function */ }
public Hashset getKilledSet(Traversable t) { /* Pass-writer-defined Killed function */ }

}

Fig. 2. An example reaching definition dataflow algorithm implemented in Cetus

arrays. This capability increases the accuracy of analysis passes and enhances
the efficiency of the transformation passes, compared to a name-based array
analysis.

Cetus’ array section analysis pass performs a conservative use/def analysis
of array variables for a given Traversable input program. Before array section
analysis is applied to a loop, all array subscript expressions are simplified. Array
section analysis then collects and merges the obtained range information of array
accesses to find the may-use and may-def set of array variables, where array
variables are expressed in terms of array sections. Figure 3 shows the result of
array section analysis for an example loop.

c = 2;

N = 100;

#pragma cetus useset(A[0:100][0:100]) defset(B[1:99][1:99])

for (i=1; i<N; i++) {

for (j=1; j<N; j++) {

B[c*i - i][j] = (A[i-1][j] + A[i+1][j] + A[i][j-1] + A[i][j+1])/4;

}

}

Fig. 3. Array section analysis example

5

4.3 Data Dependence Analysis

The Cetus data dependence analysis framework gathers dependence informa-
tion for array accesses within loop nests and creates a data dependence graph.
The framework comprises a Data Dependence Test (DDT) Driver that acts as
a wrapper around conventional array subscript dependence tests, such as the
Banerjee test and the GCD test.

Information Collection and Storage The driver iterates over all the loops in
the High-level Intermediate Representation (HIR) and identifies eligible loops.
Currently, we define eligible loops as perfect loop nests and loops in the form
for(i=0;i<n;i++), where n is a known integer value. Loop information (loop
bounds, loop step and enclosing loops) and array access-related information
(array references, enclosing loops and parent statements) is collected in hashmap
data structures and forwarded as input to the dependence test interface described
below.

Running The Dependence Tests The data dependence test tries to disprove
dependence between a pair of array accesses and, if unable to do so, it returns a
dependence vector representing the directions of dependence in each dimension
of the iteration space spanned by the enclosing loop nest. Our implementation
of the dependence test is based on the general algorithm given in Section 3.6
of [8]. The algorithm encompasses the testing of array accesses with multiple
subscripts. Affine subscripts are first split into partitions, followed by a sequence
of independent subscript tests in each of the partitions. The result of each sub-
script test is a dependence vector associated with the subscript pair. At the end,
the dependence vectors from all independent subscript tests are merged together
in a single dependence vector. Currently, Cetus includes two subscript tests: the
Banerjee test, as described in [8, 9] and the GCD test. Our data dependence
framework permits easy expansion to other subscript tests, such as the Omega
test [10] and the Range test [11].

DD Graph Interface Our implementation of the driver builds an edge-based
data dependence graph for every loop nest based on the information returned
by the dependence tests. The Graph module is designed to provide interface
functions to easily query dependence information such as source, sink, and di-
rection vectors pertaining to specific array accesses. The interface is currently
under development, and we expect it to form a high-level interface that compiler
pass writers would eventually use while incorporating dependence analysis into
transformation and analysis passes.

4.4 Range Analysis

The goal of Range Analysis is to collect, at each program statement, a map from
integer-typed scalar variables to their symbolic value ranges, represented by a

6

symbolic lower bound and an upper bound. In other words, a symbolic value
range expresses the relationship between the variables that appear in the range.
We use a similar approach as in Symbolic Range Propagation [12], with neces-
sary adjustment for the C language, to compute the set of value ranges before
each statement. The set of value ranges at each statement can be used in several
ways. Pass writers can directly query the symbolic bound of a variable or can
compare two symbolic expressions using the constraints given by the set of value
ranges.
The high-level algorithm does fix-point iteration in two phases when propagat-
ing the value ranges throughout the program. The first phase applies widening
operations at nodes that have incoming back edges to guarantee the termina-
tion of the algorithm. The second phase compensates the loss of information
due to the widening operations by applying narrowing operation to the node on
which widening has occurred. During the fix-point iteration, the value ranges
are merged at nodes that have multiple predecessors, and outgoing value ranges
are computed by symbolically executing the statement. Two typical types of
program semantics that cause such changes of value ranges are constraints from
conditional expressions and assignments to variables.

5 Basic Parallelizing Transformation Passes

We briefly describe the algorithms used in the current Cetus implementation for
the basic three parallelizing transformation techniques: privatization, reduction
variable recognition, and induction variable substitution. These are the tech-
niques found most important in automatic parallelizing compilers [13]. The par-
allelization transformation algorithms described in this section can be further
enhanced by the advanced analysis techniques, including inter-procedural anal-
ysis and alias analysis, which we will implement as future work.

5.1 Privatization

The high-level algorithm in Figure 4 describes the process of detecting privati-
zable variables, both scalars and array sections, in a loop. The set operations
that appear in the algorithm are performed on the array sections if the variable
is an array. We use the power of symbolic analysis techniques in Cetus to make
the symbolic section operation possible. For example, [1 : m] ∩ [1 : n] results
in [1 : n] if the expression comparison tool with the value range set can decide
n ≤ m.

The algorithm traverses a loop nest from the innermost to the outermost
loop. At each level, it first collects definitions (write references) and uses (read
references) in the loop body. Uses that are covered by prior definitions create
privatizable variables (or array sections) for the current loop. The other uses
are upward exposed, creating read references seen in the outer loop. Second,
the algorithm aggregates all these array sections over the loop iteration space,
creating the array sections that are private, written and upward exposed for the

7

procedure Privatization(L)
Input : Loop L
Output : DEF [L], UEU [L], PRI[L]
// DEF : Defined set, USE: Used set
// UEU : Upward-exposed USE, PRI: Private variables
// KILL: Killed set due to modified variables in the section representation
foreach direct inner loop l in L

(DEF [l], USE[l]) = Privatization(l)
// Create a CFG of the loop body with collapsed inner loops
G(N, E) = BuildCFG(L)
// Compute must defined set DEF for each node
Iteratively solve data flow equation DEF for node n ∈ N .

DEFin[n] =
⋂
{DEFout[p], p ∈ Predecessors of n}

DEFout[n] = (DEFin[n]−KILL[n]) ∪DEF [n]
DEF [L] = DEFout[Lexit] // Lexit is the exit node of L
UEU [L] = {}
// Collect defined scalars and arrays with loop-invariant sections
PRI[L] = CollectCandidates(L)
foreach node n ∈ N

UEU [L] = UEU [L] ∪ (USE[n]−DEFin[n])
foreach variable v ∈ UEU [L]

PRI[L] = PRI[L]− {v}
// Aggregate with respect to the iteration space
DEF [L] = AggregateDEF(DEF [L])
UEU [L] = AggregateUSE(UEU [L])
return (DEF [L], UEU [L])

end

Fig. 4. Privatization Algorithm. This is a simplified version of the original algo-
rithm in [14]

entire loop. The aggregation for the written sections (DEF) computes the must-
defined regular sections of the arrays over the entire loop iterations while the
aggregation of upward-exposed sections (UEU) requires only the conservative
value ranges of the sections (may-used sections). This algorithm is a slightly
simpler version of the one described in [14].

5.2 Reduction Variable Recognition

We implemented the algorithm described in [15]. Essentially, for additive re-
ductions, the algorithm recognizes statements of the form x = x + expr, where
expr is typically a real-valued, loop-variant expression. The reduction variable x
can be a scalar or an array expression. One or several reduction statements may
appear in a loop, however x must not appear in any non-reduction statement.
The algorithm is shown in Section 5.

8

// An expression ”sum” must satisfy two criteria to be a sum reduction
// - criteria 1: the loop contains one or several assignment statements of the form
// sum=sum+expr
// - criteria 2: sum does not appear anywhere else in the loop
procedure Reduction(L)

Input : Loop L
Side-effect : it creates reduction annotations into the IR

// lhse and rhse are left-hand and right-hand side expression of stmt, respectively
// findREF finds all references (name-only analysis) in a given expression or statement
// ”-” is a symbolic manipulation operator
// expr1.contains(expr2) returns true if expr2 exists in expr1

REDUCTION = {}, REF = {}
foreach stmt in L

criterion1 = false
if (stmt is Loop)

call Reduction(stmt) // recursive call
else if (stmt is AssignmentStatement)

expr = rhse-lhse
if (!(expr.contains(lhse.basename)))

criterion1 = true
REDUCTION = REDUCTION ∪ lhse
REF = REF ∪ findREF(expr)

if (!criterion1)
REF = REF ∪ findREF(stmt)

// Scalar reductions are scalar expressions (i.e., scalar variables) or arrays with
// loop-invariant subscripts. Arrays with loop-variant subscripts are array reductions
foreach expr in REDUCTION

if (!(REF.contains(expr.basename)))
if (expr is ArrayAccess AND expr.subscript is loop-invariant)

CreateAnnotation(sum-reduction, ARRAY, expr)
else

CreateAnnotation(sum-reduction, SCALAR, expr)
end

Fig. 5. The above pseudo code describes an algorithm to recognize both scalar
and array additive reduction variables in a loop.

5.3 Induction Variable Substitution

Figure 6 shows the induction variable recognition and substitution algorithm
being developed in Cetus. The algorithm is applied to each loop nest, where it
traverses three types of statements: (I) induction statements of the form iv =
iv + exp, where exp is either loop-invariant or another induction variable, (U)
statements using the induction variable iv, and (L) inner loops using iv or con-
taining induction statements for iv. The recognition of induction statements is

9

procedure Main
inc = FindIncrement(L0) // L0 is the outermost loop of the nest
Replace(L0, iv)
InsertStatement(iv = inc) // Omit this statement if iv is not live-out

end

procedure FindIncrement(L)
// Find the increments incurred by iv relative to the beginning of loop L
// - inc after[s] is the increment from beginning of loop body to statement s

// - inc into loop[L] is the increment from beginning of L to beginning of jth iteration
// - the subroutine returns the total increment added by L
inc = 0
foreach si of type I, L

if si is type of L
inc += FindIncrement(si)

else
inc += exp

inc after[si] = inc

inc into loop[L] =
∑j−1

1
inc // inc may depend on j

return
∑ub

1
inc

end

procedure Replace(L, initialval)
// Substitute v with the closed-form expression
foreach si of type I, L, U

if si is type of L
Replace(si, val)

if si is type of L, I
val = initialval + inc into loop[L] + inc after[si]

if si is type of U
Substitute(si, expr, iv, val)

end

Fig. 6. Induction Variable Substitution Algorithm. The algorithm handles gen-
eralized induction variables, as per [15]

similar to the recognition of reduction statements in Section 5.2. The algorithms
handle generalized induction variables, where the increment exp can either be
a loop-invariant expression or a linear expression that depends on another in-
duction variable (with no cyclic relationships being allowed). For the latter case
(i.e., coupled induction variables), the algorithm is successively applied to all
induction variables, beginning with the one with no such dependences.

10

6 Application Passes

6.1 OpenMP-to-GPU: Automatic translation and compiler-driven
optimizations

Hardware accelerators, such as GPUs, have emerged as powerful parallel plat-
forms for high-performance computing. While a GPU provides an inexpensive,
highly parallel system to application developers, its programming complexity
poses a significant challenge for developers. Even though the CUDA (Compute
Unified Device Architecture) programming model [16], recently introduced by
NVIDIA, offers a more user-friendly programming model General-Purpose com-
putation on GPUs (GPGPU), programming GPGPUs is still complex and error-
prone. In this project, we have developed an automatic OpenMP to CUDA GPU
translator and optimization techniques. OpenMP is a well-established program-
ming model for shared memory parallel computers. Due to the similarity between
the OpenMP and CUDA programming models, we were able to convert the
OpenMP parallelism, especially the loop-level parallelism, into the forms that
best express parallelism in the CUDA programming model. However, there are
architectural differences between traditional shared-memory machines, served
by OpenMP, and the stream architecture adopted by most GPGPUs, which
may lead to the differences in optimization strategies. To address these issues,
we have implemented several transformation techniques to optimize the perfor-
mance of translated CUDA programs. Preliminary results in Figure 7 show that
simple compiler transformation techniques, such as loop interchange and loop
coalescing, can boost the performance of translated GPU programs. In case of
SPMUL kernel translation (Figure 7 (a)), the base translation without any opti-
mizations (Base) gives reasonable speedups, even though SPMUL is an irregular
application. However, after applying basic optimizations (BO), such as exploit-
ing registers or shared memory for frequently-accessed global data, and loop
coalescing transformation (LC), the performance dramatically increases. In the
JACOBI case, naive translation (Base) degrades performance severely. However,
simple loop interchange transformation can cure this problem (Loop Int).

6.2 ATune: Compiler-Driven Adaptive Execution

The goal of this project is to develop compilers and runtime systems for dy-
namically adaptive applications. In previous work, we have created a system for
dynamic adaptation of computational applications by tuning compiler options
[17]. The current study investigates new methods to enable dynamic, adaptive
optimization and tuning in diverse architectures, with emphasis on distributed
irregular applications. For irregular applications, such as sparse matrix-vector
(SpMV) multiplication kernels, static performance optimizations are difficult
because memory access patterns may be known only at runtime. On distributed
parallel applications, load balancing and communication cost reduction are two
key issues. To address these issues, we have implemented a compiler-driven adap-
tive load-mapping and communication-algorithm-selection system. Our tuning

11

Performance of SPMUL (Main Body Speedup)

0

5

10

15

20

25

appu hood kkt_power msdoor
Sparse Matrix Input

Sp
ee

du
p Base

BO
BO + LC

GPU Performance of JACOBI

0

5

10

15

20

25

30

2048 4096 8192 12288

Input Matrix Size N (N by N matrix)

Sp
ee

du
p

Base
Loop Int

 (a) SPMUL (b) JACOBI

Fig. 7. Performance comparison between base translated version and optimized ver-
sion. The results show that even simple compiler translation techniques can boost the
performance of translated GPU programs.

system targets MPI-based distributed irregular applications, where the Cetus
compiler inserts various algorithmic alternatives for given MPI collective com-
munication calls, and generates necessary codes for adaptive iteration-to-process
mapping. Actual tuning is conducted at runtime with the help of a Cetus-
generated tuning driver.

Figure 8 shows the performance improvements of our adaptive runtime tuning
system. We applied our techniques to distributed SpMV multiplication kernels
(SPMUL). Experiments on 26 real sparse matrices in the UF Sparse Matrix
Collection [18] show that our adaptive tuning system (Tuned) reduces execution
times up to 66.7% (33.3% on average) on 16 nodes. More detailed information
can be found in [19].

Performance Improvement through Runtime Adaptation

0
2
4
6
8

10
12

af
_s

he
ll1

0

bo
ne

S1
0

ra
ja
t3
1

Si
41

G
e4

1H
72

Si
O
2

g7
ja
c2

00
sc

ld
oo

r
ap

pu

A
SI

C_6
80

ks

A
SI

C_6
80

k

cr
an

ks
eg

_2 F1 F2
ho

od
nd

6k

nd
24

k

ns
3D

a

po
iss

on
3D

b

sm
e3

Db

sm
e3

Dc

sp
ar

sin
e

au
di

kw
_1

da
rc

y0
03

in
lin

e_
1

kk
t_
po

w
er

m
sd

oo
r

Input matrices

S
pe

ed
up

Orig

Tuned

Fig. 8. Performance Improvement Through Adaptive Runtime Tuning. The bars show
the speedups of the base parallel version (Orig) and adaptively tuned version (Tuned)
on 16 nodes.

12

7 Conclusions

Cetus has grown from a simple, student-designed source-to-source translator into
a robust systems that is now supported by the National Science Foundation as a
community infrastructure. We have presented the current status in terms of the
existing internal organization, analysis and transformation passes, and several
applications. Cetus is ready for use by the user community. Via the Compunity
Portal at http://cetus.ecn.purdue.edu we are able to respond to user requests
and incorporate community-developed modules. Through these mechanisms, we
expect Cetus to become a research infrastructure that is widely applicable to
source-level optimizations and transformations for both multicore and large-scale
parallel programs.

References

1. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P. Tu, “Parallel program-
ming with Polaris,” IEEE Computer, vol. 29, no. 12, pp. 78–82, Dec. 1996.

2. Seung-Jai Min, Seon Wook Kim, Michael Voss, Sang-Ik Lee, and Rudolf Eigen-
mann, “Portable compilers for openmp,” in OpenMP Shared-Memory Parallel
Programming, Springer Verlag, Heidelberg, Germany, July 2001, Lecture Notes in
Computer Science #2104, pp. 11–19.

3. Long Fei and Samuel P. Midkiff, “Artemis: practical runtime monitoring of ap-
plications for execution anomalies,” in PLDI ’06: Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and implementation, New
York, NY, USA, 2006, pp. 84–95, ACM.

4. Ayon Basumallik and Rudolf Eigenmann, “Optimizing irregular shared-memory
applications for distributed-memory systems,” in PPoPP ’06: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming, New York, NY, USA, 2006, pp. 119–128, ACM.

5. Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos Kozyrakis, and Kunle
Olukotun, “The opentm transactional application programming interface,” in
PACT ’07: Proceedings of the 16th International Conference on Parallel Architec-
ture and Compilation Techniques, Washington, DC, USA, 2007, pp. 376–387, IEEE
Computer Society.

6. R. Asenjo, R. Castillo, F. Corbera, A. Navarro, A. Tineo, and E.L. Zapata, “Par-
allelizing irregular c codes assisted by interprocedural shape analysis,” in 22nd
IEEE International Parallel and Distributed Processing Symposium (IPDPS’08),
2008.

7. Troy A. Johnson, Sang-Ik Lee, Long Fei, Ayon Basumallik, Gautam Upadhyaya,
Rudolf Eigenmann, and Samuel P. Midkiff, “Experiences in using Cetus for source-
to-source transformations,” in Proc. of the Workshop on Languages and Compilers
for Parallel Computing (LCPC’04). Sept. 2004, pp. 1–14, Springer Verlag, Lecture
Notes in Computer Science.

8. Randy Allen and Ken Kennedy, Optimizing compilers for modern architectures,
Morgan Kaufman Publishers, San Francisco, CA, 2002.

9. Michael Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press, Cam-
bridge, MA, 1989.

13

10. William Pugh, “The Omega test: a fast and practical integer programming algo-
rithm for dependence analysis,” in Proceeding Supercomputing ’91. 1991, pp. 4–13,
IEEE Comput. Soc. Press.

11. William Blume and Rudolf Eigenmann, “The Range Test: A Dependence Test for
Symbolic, Non-linear Expressions,” Proceedings of Supercomputing ’94, Washing-
ton D.C., pp. 528–537, Nov. 1994.

12. William Blume and Rudolf Eigenmann, “Demand-Driven, Symbolic Range Prop-
agation,” Lecture Notes in Computer Science, 1033: Languages and Compilers for
Parallel Computing, pp. 141–160, 1996.

13. Rudolf Eigenmann, Jay Hoeflinger, and David Padua, “On the Automatic Paral-
lelization of the Perfect Benchmarks,” IEEE Trans. Parallel Distributed Syst., vol.
9, no. 1, pp. 5–23, Jan. 1998.

14. Peng Tu and David Padua, “Automatic Array Privatization,” in Proc. Sixth Work-
shop on Languages and Compilers for Parallel Computing, Portland, OR. Lecture
Notes in Computer Science., Utpal Banerjee, David Gelernter, Alex Nicolau, and
David Padua, Eds., August 12-14, 1993, vol. 768, pp. 500–521.

15. Bill Pottenger and Rudolf Eigenmann, “Idiom Recognition in the Polaris Par-
allelizing Compiler,” Proceedings of the 9th ACM International Conference on
Supercomputing, 95.

16. “NVIDIA CUDA [online]. available: http://developer.nvidia.com/object/cuda.html,”
.

17. Zhelong Pan and Rudolf Eigenmann, “Fast, automatic, procedure-level perfor-
mance tuning,” in Proc. of Parallel architectures and Compilation Techniques,
2006, pp. 173–181.

18. T. Davis, “University of Florida Sparse Matrix Collection [online]. available:
http://www.cise.ufl.edu/research/sparse/matrices/,” .

19. Seyong Lee and Rudolf Eigenmann, “Adaptive runtime tuning of parallel sparse
matrix-vector multiplication on distributed memory systems,” in ACM Interna-
tional Conference on Supercomputing (ICS08), June 2008, pp. 195–204.

14

