Cetus for C, C++, and Java

LCPC 04 Mini Workshop of Compiler Research Infrastructures

http://www.ece.purdue.edu/ParaMount/Cetus

In this tutorial

* Why we created Cetus and what 1t 1s
* Architecture of Cetus

e Capabilities

Why Cetus?

* Wanted source-to-source C, C++, Java compilers

— Polaris only works on Fortran 77
— GCC not source-to-source

— SUIF 1s for C; must extend IR class hierarchy for C++
and Java; last major update was 2001

* Wanted a compiler written in a modern language

— Polaris and SUIF use old dialects of C++ (pre-
standard templates)

e Best alternative was to write our own

Cetus 1s usetul for...

* Program analysis at the source level
* Source-code instrumentation

e Transform source code into a “‘normalized” form
for use with other programs or scripts

e But not if

— you want to do back-end compiler work

— other infrastructures are more appropriate for that

What 1s Cetus?

* Cetus proper

— Written 1n Java

— C parser (Antlr)

— Intermediate representation (10K+ lines; stable)

— Passes (1.5K+ lines; growing)

— Parse-tree walker & disambiguator (discussed later)

— Available for download
® license similar to Perl

— Written by 3 grad students, part-time, 2 years

What 1s Cetus? (continued)

* Separate, useable with Cetus or other programs

— C (B1son) & C++ (GLR-Bison) parsers

— Written in C++

— Creates parse trees for Cetus to read

— Works fine separately; still integrating with Cetus

— Not yet available for download
* uses GNU code, license GPL
— Written by me 1n about a month

Running Cetus

e export CLASSPATH=cetus.jar:antlr.jar
* java cetus.exec.Driver -antlr [other options] *.c

* Cetus uses an existing preprocessor (€.g. cpp)

— output still contains #include directives

— macros remain expanded
* Cetus output goes 1n a subdirectory

— source files have the same name as input files
— not pretty-printed (use indent or astyle)

— some passes generate graphviz-compatible graphs

Architecture

C Scanner & Parser or C Scanner & Parser® C++ Scanner & Parser*
(Antlr) (flex & bison) (flex & glr bison)
Ambiguous

Parse Trees Parse Trees

Generated Tree Generated Tree Walker
Walker + Disambiguator
Cetus IR

Tools (e.g. expression simplifier, printing lists)

Analysis Passes Instrumentation Simple Transforms Optimizations
(e.g. static (e.g. dynamic (e.g. single return, (e.g. loop
callgraph, CFG) || callgraph, profiling) | | loops to subroutines) parallelization)

* indicates a separate program

Troy A. Johnson 8

Parsing C++

* Would like to use the actual grammar

— not compatible with Antlr or yacc/bison without a lot
of rewriting (e.g. gcc <3.4)

— don't want to write a custom parser (e.g. gcc >= 3.4)

* Bison has recently acquired a GLR (generalized
LR) parsing mode

— accepts unmodified grammar
— can be used to separate syntax from semantics

— but generates ambiguous parse trees

Parsing C++ (cont.)

* Cetus approach

— use glr-bison to read the program and write its parse
tree to a file

— parse tree contains “ambiguity’” nodes where only one
of the child trees 1s correct

— Cetus reads the parse tree and runs a “tree walker” on
it to generate IR while resolving ambiguities

Architecture

C Scanner & Parser or C Scanner & Parser® C++ Scanner & Parser*
(Antlr) (flex & bison) (flex & glr bison)
Ambiguous

Parse Trees Parse Trees

Generated Tree Generated Tree Walker
Walker + Disambiguator
Cetus IR

Tools (e.g. expression simplifier, printing lists)

Analysis Passes Instrumentation Simple Transforms Optimizations
(e.g. static (e.g. dynamic (e.g. single return, (e.g. loop
callgraph, CFG) || callgraph, profiling) | | loops to subroutines) parallelization)

* indicates a separate program

Troy A. Johnson 11

Cetus High-Level IR

* Basic design principles and consequences

— must be able to reproduce the source code
=> |R models language
— should prevent mistakes by pass writers
=> 1nvariants enforced on entry to IR methods
— support interprocedural analysis
=> all source files represented in IR simultaneously
— should be simple and compact

=> shallow class hierarchy for IR (at most 3 levels deep)

Troy A. Johnson

12

Major Parts of IR Class Hierarchy

Program [RIterator
TranslationUnit BreadthFirstlterator

Declaration DepthFirstlterator

Annotation FlatIterator
Procedure

VariableDeclaration

Statement
ForLoop
WhileLoop

Expression

BinaryExpression
FunctionCall

IR Tree != Class Hierarchy Tree
 Promem

TranslationUnit1 TranslationUnitN

T

Dec:lalration1 DeclarationN

—

Statement1 StatementN

/\

Expression, ... [Expressiong

/\

Expression, ... [Expressiong

Iterating Over IR Tree

* [terators provided for Breadth, Depth, and Flat
(single-level) search order

* Work like normal Java Iterators, except

— next(Class c) returns the next object of Class ¢
— next(Set s) returns the next object of a Class 1n Set s

— pruneOn(Class c) forces the 1terator to skip
everything beneath objects of Class ¢

Iteration Examples

/* Look for loops 1n a procedure. Assumes proc 1s a Procedure
object. */

BreadthFirstlterator iter = new BreadthFirstlterator(proc);

try {
while (true)

d

Loop loop = (Loop)iter.next(Loop.class);
// Do something with the loop

h
}+ catch (NoSuchElementException e) {

)

Iteration Examples (cont.)

/* Look for procedures in a program. Assumes prog is a Program
object. Does not look for procedures within procedures. */

BreadthFirstlterator iter = new BreadthFirstlterator(prog);
iter.pruneOn(Procedure.class);

try {
while (true)

d

Procedure proc = (Procedure)iter.next(Procedure.class);
// Do something with the procedure

h
}+ catch (NoSuchElementException ¢) {

)

Symbol Table Management

* Some IR classes implement SymbolTable
interface

— provides addDeclaration, findSymbol, etc.

* Adding (removing) a declaration adds (removes)
symbols automatically

* Symbol table maps an IDExpression onto the
Declaration that put it in the table

— mapping 1s one-to-one if SingleDeclarator pass is run

— use findSymbol twice then == to see 1f same symbol

Symbol Table (cont.)

* Searching a SymbolTable searches its parent
tables 1f the symbol 1s not found

— parent table not necessarily parent on IR tree

— can have multiple parent tables (C++ multiple
inheritence)

— but only one IR-tree parent (syntactically enclosing
parent)

Error Detection

* IR methods throw exceptions:

— DuplicateSymbolException

* if a name collision occurs 1n the symbol table
— NotAChildException

* if an IR object should be a child of another, but 1sn't
— NotAnOrphanException

* if an IR object should not be a child of another, but 1s

Customized Printing

* Problem: Same IR classes for different languages

— e.g. ClassDeclaration for C++ and Java
— C++ class terminates with a ;' and Java classes don't
— What should the print method do?

e Solutions

— additional classes or flags to indicate language

— customized printing <-- Cetus uses this

* Why stop with a few classes?

Customized Printing (cont.)

e Most classes have a static Method
class print method member

— set to a default print method 1n static init block

— constructor 1nitializes a non-static

object print method member to class print method

— print(OutputStream stream) invokes

object print method with this and stream as args
* (Class has static setClassPrintMethod(Method)

* Also non-static setPrintMethod(Met!

Troy A. Johnson

nod)

22

Customized Printing (cont.)

e Benefits

— can change printing for all instances of an IR class
* quick way to add simple instrumentation

— can change printing for a particular instance
* 1.. we may wish to print a parallel loop differently

— can set print method to null to hide code in output
* Costs

— one static and one non-static variable
— slower printing (not usually a big deal)

— toString() kept consistent by printing to a buffer

* but not often used on large parts of the tree

Annotations

* Subclass of Declaration

— can appear 1n IR tree anywhere a declaration can
* Stores either

— a single String

— a Map of String keys onto String values
* Printable as

— //-style comment, /**/ comment, pragma, raw text

e Facilitates instrumentation & information
exchange among passes

Architecture

C Scanner & Parser or C Scanner & Parser® C++ Scanner & Parser*
(Antlr) (flex & bison) (flex & glr bison)
Ambiguous

Parse Trees Parse Trees

Generated Tree Generated Tree Walker
Walker + Disambiguator
Cetus IR

Tools (e.g. expression simplifier, printing)

Analysis Passes Instrumentation Simple Transforms Optimizations
(e.g. static (e.g. dynamic (e.g. single return, (e.g. loop
callgraph, CFG) || callgraph, profiling) | | loops to subroutines) parallelization)

* indicates a separate program

Troy A. Johnson 25

Analysis Passes

e Call Graph

— creates a static call graph for the program
* Control Flow Graph

— creates a basic-block graph of a procedure
* Basic Use and Def set computation

— lists values used and defined within a region

Transformation Passes
Single Call

— afterwards each statement contains at most one call
Single Declarator

— afterwards each declaration contains at most one
declarator

Single Return
— afterwards each procedure contains at most one return
Loops to Subroutines

— extracts loops out into separate subroutines

Work 1n Progress

* Improved data flow analysis

* Pointer alias analysis
* Finish integrating C++ front end with Cetus

e Java front end

Cetus Used 1in Research

* At least 4 current projects at Purdue

* Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Sam
Midkiff and Josep Torrellas, AccMon: Automatically Detecting Memory-
Related Bugs via Program Counter-based Invariants, to appear in Proc. of the
37th Annual IEEE/ACM International Symposium on Micro-architecture
(MICRO 04), December 2004

* Sang-lk Lee, Troy A. Johnson and Rudolf Eigenmann, Cetus - An Extensible
Compiler Infrastructure for Source-to-Source Transformation, Proc. of the
Workshop on Languages and Compilers for Parallel Computing (LCPC 03),
October 2003.

* Seung-Jai Min, Ayon Basumallik and Rudolf Eigenmann, Supporting Realistic
OpenMP Applications on a Commodity Cluster of Workstations, International
Workshop on OpenMP Applications and Tools, WOMPAT 2003, Toronto,
Canada, June 26-27, 2003.

Troy A. Johnson 29

Obtaining Cetus

* http://www.ece.purdue.edu/ParaMount/Cetus
* Only the C version 1s available for now
* First release was Aug 11; third was Sep 15

— releases typically once or twice per month

e Contributions welcomed

— NEW passes
- bug fixes

— suggestions

