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Cetus for C, C++, and Java

http://www.ece.purdue.edu/ParaMount/Cetus

LCPC 04 Mini Workshop of Compiler Research Infrastructures
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In this tutorial

● Why we created Cetus and what it is
● Architecture of Cetus
● Capabilities
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Why Cetus?

● Wanted source-to-source C, C++, Java compilers
– Polaris only works on Fortran 77

– GCC not source-to-source

– SUIF is for C; must extend IR class hierarchy for C++ 
and Java; last major update was 2001

● Wanted a compiler written in a modern language
– Polaris and SUIF use old dialects of C++ (pre-

standard templates)

● Best alternative was to write our own
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Cetus is useful for...

● Program analysis at the source level
● Source-code instrumentation
● Transform source code into a “normalized” form 

for use with other programs or scripts
● But not if

– you want to do back-end compiler work

– other infrastructures are more appropriate for that
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What is Cetus?
● Cetus proper

– Written in Java

– C parser (Antlr)

– Intermediate representation (10K+ lines; stable)

– Passes (1.5K+ lines; growing)

– Parse-tree walker & disambiguator (discussed later)

– Available for download
● license similar to Perl

– Written by 3 grad students, part-time, 2 years
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What is Cetus? (continued)

● Separate, useable with Cetus or other programs
– C (Bison) & C++ (GLR-Bison) parsers

– Written in C++

– Creates parse trees for Cetus to read

– Works fine separately; still integrating with Cetus

– Not yet available for download
● uses GNU code, license GPL

– Written by me in about a month
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Running Cetus

● export CLASSPATH=cetus.jar:antlr.jar
● java cetus.exec.Driver -antlr [other options] *.c
● Cetus uses an existing preprocessor (e.g. cpp)

– output still contains #include directives

– macros remain expanded

● Cetus output goes in a subdirectory
– source files have the same name as input files

– not pretty-printed (use indent or astyle)

– some passes generate graphviz-compatible graphs
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Architecture
C Scanner & Parser

(Antlr)
C Scanner & Parser*

(flex & bison)
C++ Scanner & Parser*

(flex & glr bison)

Ambiguous
Parse TreesParse Trees

Generated Tree Walker
+ Disambiguator

Generated Tree
Walker

Cetus IR

or( )

Analysis Passes
(e.g. static

callgraph, CFG)

Simple Transforms
(e.g. single return,

loops to subroutines)

Optimizations
(e.g. loop

parallelization)

Instrumentation
(e.g. dynamic

callgraph, profiling)

Tools (e.g. expression simplifier, printing lists)

* indicates a separate program
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Parsing C++

● Would like to use the actual grammar
– not compatible with Antlr or yacc/bison without a lot 

of rewriting (e.g. gcc < 3.4)

– don't want to write a custom parser (e.g. gcc >= 3.4)

● Bison has recently acquired a GLR (generalized 
LR) parsing mode
– accepts unmodified grammar

– can be used to separate syntax from semantics

– but generates ambiguous parse trees



10Troy A. Johnson

Parsing C++ (cont.)

● Cetus approach
– use glr-bison to read the program and write its parse 

tree to a file

– parse tree contains “ambiguity” nodes where only one 
of the child trees is correct

– Cetus reads the parse tree and runs a “tree walker” on 
it to generate IR while resolving ambiguities
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Architecture
C Scanner & Parser
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Cetus High-Level IR

● Basic design principles and consequences
– must be able to reproduce the source code

=> IR models language

– should prevent mistakes by pass writers

=> invariants enforced on entry to IR methods

– support interprocedural analysis

=> all source files represented in IR simultaneously

– should be simple and compact

=> shallow class hierarchy for IR (at most 3 levels deep)
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Major Parts of IR Class Hierarchy

Statement

Declaration

Expression

Program
TranslationUnit

Procedure
VariableDeclaration
...

ForLoop
WhileLoop
...

BinaryExpression
FunctionCall
...

IRIterator

DepthFirstIterator
BreadthFirstIterator

FlatIteratorAnnotation
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IR Tree != Class Hierarchy Tree
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TranslationUnit
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Declaration
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Statement
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Iterating Over IR Tree

● Iterators provided for Breadth, Depth, and Flat 
(single-level) search order

● Work like normal Java Iterators, except
– next(Class c) returns the next object of Class c

– next(Set s) returns the next object of a Class in Set s

– pruneOn(Class c) forces the iterator to skip 
everything beneath objects of Class c
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Iteration Examples

/* Look for loops in a procedure.  Assumes proc is a Procedure
    object. */

BreadthFirstIterator iter = new BreadthFirstIterator(proc);
try {
  while (true)
  {
    Loop loop = (Loop)iter.next(Loop.class);
    // Do something with the loop
  }
} catch (NoSuchElementException e) {
}
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Iteration Examples (cont.)

/* Look for procedures in a program.  Assumes prog is a Program 
object.  Does not look for procedures within procedures. */

BreadthFirstIterator iter = new BreadthFirstIterator(prog);
iter.pruneOn(Procedure.class);

try {
  while (true)
  {
    Procedure proc = (Procedure)iter.next(Procedure.class);
    // Do something with the procedure 
  }
} catch (NoSuchElementException e) {
}
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Symbol Table Management

● Some IR classes implement SymbolTable 
interface
– provides addDeclaration, findSymbol, etc.

● Adding (removing) a declaration adds (removes) 
symbols automatically

● Symbol table maps an IDExpression onto the 
Declaration that put it in the table
– mapping is one-to-one if SingleDeclarator pass is run

– use findSymbol twice then == to see if same symbol
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Symbol Table (cont.)

● Searching a SymbolTable searches its parent 
tables if the symbol is not found
– parent table not necessarily parent on IR tree

– can have multiple parent tables (C++ multiple 
inheritence)

– but only one IR-tree parent (syntactically enclosing 
parent)
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Error Detection

● IR methods throw exceptions:
– DuplicateSymbolException

● if a name collision occurs in the symbol table

– NotAChildException
● if an IR object should be a child of another, but isn't

– NotAnOrphanException
● if an IR object should not be a child of another, but is
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Customized Printing

● Problem: Same IR classes for different languages
– e.g. ClassDeclaration for C++ and Java

– C++ class terminates with a ';' and Java classes don't

– What should the print method do?

● Solutions
– additional classes or flags to indicate language

– customized printing   <-- Cetus uses this

● Why stop with a few classes?
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Customized Printing (cont.)

● Most classes have a static Method 
class_print_method member
– set to a default print method in static init block

– constructor initializes a non-static 
object_print_method member to class_print_method

– print(OutputStream stream) invokes 
object_print_method with this and stream as args

● Class has static setClassPrintMethod(Method)
● Also non-static setPrintMethod(Method)
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Customized Printing (cont.)
● Benefits

– can change printing for all instances of an IR class
● quick way to add simple instrumentation

– can change printing for a particular instance
● i.e. we may wish to print a parallel loop differently

– can set print method to null to hide code in output

● Costs
– one static and one non-static variable

– slower printing (not usually a big deal)

– toString() kept consistent by printing to a buffer
● but not often used on large parts of the tree
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Annotations

● Subclass of Declaration
– can appear in IR tree anywhere a declaration can

● Stores either
– a single String

– a Map of String keys onto String values

● Printable as
– //-style comment, /**/ comment, pragma, raw text

● Facilitates instrumentation & information 
exchange among passes
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Architecture
C Scanner & Parser

(Antlr)
C Scanner & Parser*
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Ambiguous
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Walker

Cetus IR

or( )

Analysis Passes
(e.g. static

callgraph, CFG)

Simple Transforms
(e.g. single return,

loops to subroutines)

Optimizations
(e.g. loop

parallelization)

Instrumentation
(e.g. dynamic

callgraph, profiling)

Tools (e.g. expression simplifier, printing)

* indicates a separate program
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Analysis Passes

● Call Graph
– creates a static call graph for the program

● Control Flow Graph
– creates a basic-block graph of a procedure

● Basic Use and Def set computation
– lists values used and defined within a region
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Transformation Passes
● Single Call

– afterwards each statement contains at most one call

● Single Declarator
– afterwards each declaration contains at most one 

declarator

● Single Return
– afterwards each procedure contains at most one return

● Loops to Subroutines
– extracts loops out into separate subroutines
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Work in Progress

● Improved data flow analysis
● Pointer alias analysis
● Finish integrating C++ front end with Cetus
● Java front end
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Cetus Used in Research

● At least 4 current projects at Purdue

● Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Sam 
Midkiff and Josep Torrellas, AccMon: Automatically Detecting Memory-
Related Bugs via Program Counter-based Invariants, to appear in Proc. of the 
37th Annual IEEE/ACM International Symposium on Micro-architecture 
(MICRO 04), December 2004

● Sang-Ik Lee, Troy A. Johnson and Rudolf Eigenmann, Cetus - An Extensible 
Compiler Infrastructure for Source-to-Source Transformation,  Proc. of the 
Workshop on Languages and Compilers for Parallel Computing (LCPC 03), 
October 2003.

● Seung-Jai Min, Ayon Basumallik and Rudolf Eigenmann, Supporting Realistic 
OpenMP Applications on a Commodity Cluster of Workstations,  International 
Workshop on OpenMP Applications and Tools, WOMPAT 2003, Toronto, 
Canada, June 26-27, 2003.
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Obtaining Cetus
● http://www.ece.purdue.edu/ParaMount/Cetus
● Only the C version is available for now
● First release was Aug 11; third was Sep 15

– releases typically once or twice per month

● Contributions welcomed
– new passes

– bug fixes

– suggestions


