TIM Design for Optimized Mechanical and Thermal Properties
Faculty: G. Subbarayan, S. Garimella
Students: P. Vaitheeswaran, S. Achar

Objective
Develop models to estimate the effective elastic modulus and thermal conductivity of particulate thermal interface materials (TIMs), and to determine the optimal configurations for maximum conductivity and minimum stiffness.

Approach
- Energy and momentum transfer from chip to sink occur primarily through filler particles
- Inter-particle transport restricted to a small zone of interaction

Impact
Optimized TIM performance leads to greater heat removal and allows design of faster and more reliable semiconductor devices

Selected Publications
- Dan, Bo et al. (2009), Proc. of the ASME InterPACK Conference, 2, pp. 69-81

Heat flux dominant in neighborhood of point of contact between particles

Microstructures of given particle size distribution simulated