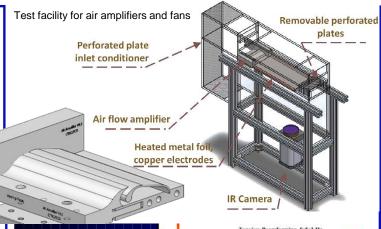
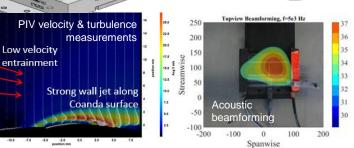
Low Noise Air Amplifiers

Faculty: Dr. Tim Persoons

Researchers: Dr. Sajad Alimohammadi & Dr. Quentin Pelletier

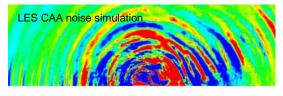

Objectives


Assess potential of flow amplifier technology to replace/assist rotary fans, addressing key challenges in data center thermal management.

Develop linear air flow amplifiers suitable to confined spaces.

Approach

- 1. Modular test setup composed of flow channel with heated metal foil for IR thermography, PIV velocity, PQ curves, acoustic noise testing.
- 2. Validated aeroacoustics modeling results of hybrid URANS/LES model to help improve air amplifier design for noise reduction.
- 3. Developed Excel prediction tool for comparison of axial fans vs commercial & CTRC flow amplifier
- 4. Built interactive lab demonstrator.



For the same flow rate and loading conditions...

	Axial Fans (Nidec UltraFlo™)	Air Amplifier (Brauer Airmover™)	CTRC Blade Air Amplifier
Operating conditions	At 33% speed $(n=7,200~{ m rpm})$	$h=0.05\ mm$ $p_i=2.01\ bar$	$h=0.1\ mm$ $p_i=1.45\ bar$
Flow rate	Same	Same	Same
Pressure head	High $\Delta p \sim 1-Q^2$	Moderate $\Delta p \sim 1-Q$	Moderate $\Delta p \sim 1-Q$
Power use	10 W	140 W (electr. equiv.)	120 W (electr. equiv.)
Heat transfer	1.00 23 W/(m²K)	0.95 22 W/(m²K)	1.80 41 W/(m²K)
Noise level	55-57 dB(A) $p_{ac} \propto n^5$	58-62 dB(A) $p_{ac} \propto p_i^{1.5}$ (choked)	59-69 dB(A) $p_{ac} \propto p_i^{1.0}$ (subsonic)
Sound quality	Tonality 92-96%	Tonality 51-59%	Tonality 32-36%

Impact

- Objective assessment of fan curve, efficiency and noise for amplifier vs axial fans at similar loading conditions:
- ✓ Pros: similar PQ curve, improved cooling, reliability
- ✓ Cons: low overall efficiency, higher noise albeit more broadband, lower tonality

Related Publications

• Garimella S. V., Persoons T., Weibel J. A., Gektin, V., Electronics thermal management in information and communications technologies: Challenges and future directions, *IEEE Trans. Compon. Packag. Manuf. Technol.* (In press)

