The Petal Effect of Parahydrophobic Surfaces offers Low Receding Contact **Angles that Promote Effective Boiling**

Faculty: J. A. Weibel, S. V. Garimella

Student: Taylor P. Allred

OBJECTIVE

- Evaluate the role of dynamic wetting behavior on bubble dynamics and boiling performance.
- Perform the first boiling study on rose-like parahydrophobic surfaces.

angles

APPROACH

- Fabricated smooth and textured hydrophobic surfaces with high and low receding contact angles.
- Evaluated the bubble dynamics and boiling performance of each surface.

Receding contact angle measured on a droplet (a,d) and bubble (b,e) and progressive images of the bubble ebullition cycle on low-receding-angle PDMS and high-receding-angle Teflon surfaces.

IMPACT

- Showed that the receding contact angle plays the dominant role in governing bubble growth dynamics and critical heat flux.
- Demonstrated that hydrophobic surfaces can maintain nucleation boiling to high heat fluxes with sufficiently low receding contact angles.
- Introduced the promising class of parahydrophobic surfaces for boiling enhancement.

Effective Nucleate Boiling from a parahydrophobic surface with rose-like wetting behavior.

smooth

PDMS

smooth Teflon

> T. P. Allred, J. A. Weibel, and S. V. Garimella, "The Petal Effect of Parahydrophobic Surfaces offers Low Receding Contact Angles that Promote Effective Boiling," International Journal of Heat and Mass Transfer, Vol. 135, pp. 403-412, 2019.

