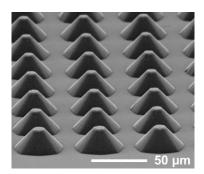
Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical **Superhydrophobic Surfaces**

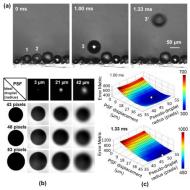
Faculty: S. V. Garimella, J. A. Weibel Student: Xuemei Chen, Ravi S. Patel

OBJECTIVE

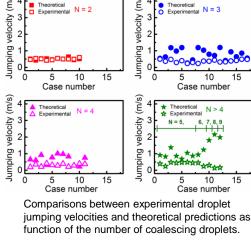
Investigate the dynamics of jumping events induced by coalescence of multiple droplets of different with suitable experimental techniques and develop a theoretical model to explain the underlying physical mechanism.

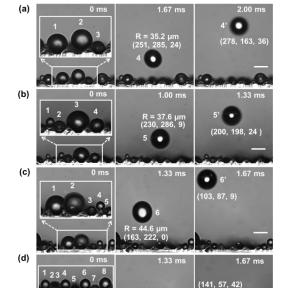

APPROACH

- Design and fabricate hierarchical superhydrophobic surfaces on silicon substrate.
- Develop a depth-from-defocus (DFD) image processing technique to track the droplet jumping trajectories in three dimensions in order to appropriately characterize the jumping behavior.
- Develop a theoretical model to quantitatively predict jumping velocities.


PUBLICATIONS

X. Chen, Ravi S. Patel, J. A. Weibel, and S. V. Garimella, Sci. Rep., 6, 18649, 2016.




Hierarchical superhydrophobic surface

DFD Image Processing Technique

jumping velocities and theoretical predictions as a

Selected cases showing droplet jumping induced by the coalescence of (a-d) three, four, five and eight droplets (marked with numbers in the inset images), respectively.

IMPACT

- The removal of condensate droplets from the hierarchical surface was dominated by the coalescence of multiple droplets.
- The jumping velocity decreases gradually with an increase in the number of coalescing droplets.
- A general model is developed to explain the trends of droplet jumping velocity observed in the experiments.

