Develop high-performance low-cost thermoelectric materials based on ultra-small Bi₂Te₃ nanocrystals.

Objective

Thermal conductivity, κ of pellets, with NC size

Approach

Nanocrystals:
- **Bottom-up**: Wet-chemistry synthesis using the pyrolysis of organometallic compound
- **Top-down**: Ball milling of bulk materials

Wet-Chemistry Synthesis

Ball Milling

Impact

- Synthesis of Bi₂Te₃ nanocrystals with sizes down to 4nm and various morphologies yields low thermal conductivity κ.
- Optimizing the ligand levels within the powder can yield higher Seebeck coefficient S, and electrical conductivity σ, while preserving the low lower κ. This would increase ZT.
- The role of ligands is better understood. Such understanding is critical for scale-up production of these thermoelectric materials.

Selected Publications